• Title/Summary/Keyword: optimum dosage

Search Result 275, Processing Time 0.025 seconds

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

Studies on Computer Optimization Techniques for Hydrophilic Vehicle Compositions

  • Lee, Chi-Ho;Shin, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.185-196
    • /
    • 1988
  • The inflence of hydrophilic vehicles on percutaneous absorption rate of griseofulvin was studied using intact skin of full thickness of hairless rat. The in vitro absorption rates were used as the characteristics for deciding the optimum formula of ointment vehicles. The optimum formula of vehicle compositions for maximum absorption rate was obtained from the polynomial regression equation and the two graphical techniques, contour graph and partial derivative graph. It was composed of sodium lauryl sulfate (1.65 W /W%), white petrolatum (16.5 W /W%), propylene glycol (12.0 W /W%), and stearyl alcohol (19.6W /W%). The experimental value obtained from the optimum formula and the prediction value were 33.99 and 33.87 ${\mu}g/\sqrt{min}$, respectively. From these results, it was believed that optimum formula for semisolid dosage forms could be obtained from the application of the optimization technique used in this study.

  • PDF

Optimum Coagulation Conditions for Ceramic Microfiltration Membrane Process (세라믹 정밀여과막 공정을 위한 최적 응집조건)

  • Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Park, Jong-Yul
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • This study was carried out to find the optimum coagulation conditions for ceramic microfiltration process of Y water treatment plant. When pH of raw water from Y Dam was adjusted to 7, the efficiency of coagulation was the best and the optimun dosage of coagulant was 3 mg/L(as $Al_2O_3$) for turbidity of raw water less then 10 NTU in Jar test. In mini module test, the decay rate of specific flux was the lowest when PAC (poly Aluminum Chloride) was used among coagulants and pH was adjusted to 7. The decay rate of specific flux for raw water turbidity of 10~30 NTU was greatly decreased with increase of dosage of coagulant (PAC) while the rate was not significantly decreased for turbidity more than 50 NTU. In conclusion, the optimum dosage of PAC (11% as $Al_2O_3$) was 30 and 50 mg/L for raw water turbidity of less than 10 NTU and more than 50 NTU, respectively. The dosage of PAC should be increased linearly 30 to 50 mg/L depending on raw water turbidity of 10 to 50 NTU.

Cell separation from high density culture broths of Alcaligenes eutrophus by using Al-based coagulants (Alcaligens eutrohus 고농도 배양액으로부터 알루미늄(Al)계 응집제를 이용한 세포분리)

  • 조경숙;류희욱;정현우;곽종운;장용근
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • Cell recovery from high cell density broths of Alcaligenes eutrophus by pretreatment with aluminum-based coagulants such as aluminum sulfate, polyaluminum hydrooxide chloride silicate (PACS), and polyaluminum hydrooxide chloride (Hi-PAX) was carried out. Cells coagulated with coagulants could be successfully recovered above 95-99% by centrifugation or filtration. The optimum initial pH of fermentation broths for cell recovery was in the range of 10 to 12. Optimum coagulants dosage for cell recovery increased with increasing of cell concentrations (21-160 g/L). The optimum coagulant dosages to recover cells with more than 95% cell recovery by centrifugation for the cell concentrations ranged 21-160 g/L were as follows: aluminum sulfate, 416-1708 mg Al/L; PACS, 211-826 mg Al/L; Hi-PAX, 320-960 mg Al/L. At optimum conditions for the coagulation of cells, centrifugal forces for 95% of cell recovery were dependent on the cell concentration. The centrifugal forces at 82 g/L and 160 g/L of cell concentration were only 45${\times}$g and 1600${\times}$g, respectively.

  • PDF

A Study on Improving Dewaterability and Determining Optimum Condition of Digested Sludge Using Limestone (석회석을 이용한 소화슬러지 탈수성 개선 및 최적조건 결정에 관한 연구)

  • Kim, Ean-Ho;Seo, Jeoung-Yoon
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • The purposes of this study were to examine applicability of limestone as a conditioning agent and to determine the optimum conditions for improving dewaterability of digested sludge. The optimum conditions for temp., pH, dosage, particle size, time, and pressure was $30^{\circ}C$, 7, 45 g/l, 100 mesh, 30 min., and $2.66 {\times} 10^4 N/m^2$, respectively. On the basis of induced optimum conditions, if adding limestone in digested sludge, it estimated that its specific resistance was $1.43 {\times} 1012 m/kg$. Therefore, it seemed that we could utilize limestone as conditioning agent for improving dewaterability of digested sludge.

Decolorization of Rhodamine B by Fenton, Fonton-like and Photo-Fenton-like Oxidation (펜톤, 펜톤-유사 및 광-펜톤-유사 반응을 이용한 Rhodamine B의 탈색)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.150-157
    • /
    • 2007
  • The chemical and photochemical decolorization of Rhodamine B (RhB) in water has been carried out by Fenton, Fenton-like and photo-Fenton-like process. The effect of applied $H_2O_2,\;Fe^{2+}$ dosage (Fenton process), $H_2O_2,\;Fe^{\circ}$ dosage (Fenton-like and photo-Fenton-like process), UV light power (photo-Fenton-like process) pH (all processes) have been studied. The results obtained showed that more than 98% of color removal was obtained for the RhB solutions in every process. However, Fenton-like process was not suitable for the color removal of RhB because Fenton-like process was required much more reagents than Fenton and photo-Fenton-like process. The Fenton and photo-Fenton-like process showed similar reagents need. Optimum pH for three processes in this study is about pH 3. The relative order of sensitivity for pH of each process was: Fenton-like > photo-Fenton-like > Fenton.

Degradation Properties of Ibuprofen Using Photocatalytic Process (광촉매 공정에 따른 이부프로펜의 분해 특성)

  • Cai, Jin-Hua;Na, Seung-Min;Ahn, Yun-Gyong;Lee, Se-Ban;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.411-419
    • /
    • 2012
  • In this study, Ibuprofen (IBP) degradation by the photo catalytic process was investigated under various parameters, such as UV intensity, optimum dosage of $TiO_2$, alkalinity, temperature and pH of bulk solution. The pseudo-first order degradation rate constants were in the order of $10^{-1}$ to $10^{-4}min^{-1}$ depending on each condition. The Photocatalytic IBP degradation rate increased with an increase in the applied UV power. At high UV intensity a high rate of tri-iodide ($I_3{^-}$) ion formation was also observed. Moreover, in order to avoid the use of an excess catalyst, the optimum dosage of catalyst under the various UV intensities (30 and 40 W/L) was examined and ranged from approximately 0.1 $gL^{-1}$. The photo catalytic IBP degradation rate was changed depending on the alkalinity and temperature and pH in the aqueous solution. This study demonstrated the potential of photo catalytic IBP degradation under different conditions.

Estimation of the Optimum Factor of the Struvite Crystalization for the Nitrogen and Phosphorus Removal in WWTP (폐수내 질소 및 인 제거를 위한 struvite 결정화 최적조건 도출)

  • Kim, Ji Yeon;Moon, Yong Taik;Seo, In Seok;Kim, Byung Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.745-753
    • /
    • 2007
  • By struvite and hydroxyapatite crystallization, was high concentration of nitrogen and phosphorus in wastewater simultaneously. Particularly, removal of nitrogen and phosphate for crystallization have been applied to landfill leachates and animal wastewater. The purpose of this study is to decide the optimum struvite crystallization factors, sequence of $Mg^{2+}$ addition, pH control and the molar ratio of $Mg^{2+}$ over $PO_4^{3-}$. In conclusion, dosage of the magnesium followed by pH control formed magnesium hydroxide, so pH was decreased. Therefore, pH adjustment should followed by after magnesium dosage and then pH should be adjusted to 11. Over pH 10, it was not good for struvite crystallization efficiency by side reaction. Following of the $Mg^{2+}$ and the $PO_4^{3-}$ are dosed excessively, the removal efficiency of the $NH_4^+$ increased. A molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}$, 1.3:1:1.3 was the most on effective for $NH_4^+$ removal at pH 9.5. But for the perfect removal $NH_4^+$, it is thought to be that molar ratio should be 2:1:2.

Color Removal of Rhodamine B by Photoelectrocatalytic Process Using Immobilized TiO2 (고정화 광촉매를 이용한 광전기촉매 공정에서 Rhodamine B의 색도 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.226-232
    • /
    • 2008
  • A feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B (RhB) was performed in a photoelectrochemical reactor with immobilized $TiO_2$ particle. The effects of operating conditions, such as current, electrolyte and pH were evaluated. The experimental results showed that optimum $TiO_2$ dosage and current in the photoelectrocatalytic process were 83.3 g/l and 0.5 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes (photocatalytic and electrolytic process). The addition of NaCl increased the initial decolorization rate and reduced reaction time. The optimum dosage of NaCl was 0.15 g/l. The decolorization rate of the photoelectrocatalytic process increased sharply with a decrease in pH value. However when the NaCl was added, the pH effect was not high.

Utilization of Organic Polymers for Improvement of Drinking Water Treatment Process (정수공정 개선을 위한 유기성 Polymer의 사용)

  • Lee, Hwa-Ja;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.217-222
    • /
    • 1998
  • Organics matters including algae are the major contaminants of Nak-dong river and it's concentration Is more Increasing now. The use of coagulants has been Incresed for the effective treatment of drinking water, and aluminum coagulants have been the most widely used in raw water treatment. However, when inorganic metal coagulant is excessively used for long period, it would result in secondary problems, such as increasing sludge production, enhancing the cost of water treatment process, and increasing concentration of residual metal, especially aluminum. Therefore, recently. in order to reduce the use of metal coagulant and enhance the coagulation effectiveness, several alternative coagulants, such as polymeric Inorganic coagulants and organic polymers, have been used In water treatment plants. The objectives of thins research were (11 to determine optimum dosage concentration and compare the coajuiation efnciency at various pH ranees with alum alone, alum+cationic polymer, and alum+anlonlc polymer, (21 to evaluate the amount of alum reduced by using organic polymer, (31 to maximize removal officiency of organic matter and minimize the concentration of residual aluminum.

  • PDF