• 제목/요약/키워드: optimum corrosion protection potential

검색결과 28건 처리시간 0.022초

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석 (An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation)

  • 임관진;김기준;이명훈;문경만
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구 (A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

소형선박용 Al-Mg 합금의 해양환경 중 최적 방식 전위결정에 관한 연구 (Investigation on optimum protection potential of Al-Mg alloy for small ship application in sea water solution)

  • 김성종;장석기;김정일;고재용
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.23-24
    • /
    • 2005
  • This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a passive film. In a potentiostatic experiment, the current density after 1200 sec in the potential range of $-0.68{\sim}-1.5 V$ was low. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.5 to -0.7 V(SSCE).

  • PDF

조선용 고장력강재와 보통강도강재간의 용접부위의 부식피로와 전기방식에 관한 연구 (A study on the corrosion fatigue and cathodic protection of the welded zone between high tensile strength steel and general strength steel used for the shipbuilding)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.39-50
    • /
    • 1984
  • The plane bending corrosion fatigue test was performed on the welded zone between SM58 steel plate and SM41 steel plate jointed with submerged arc welding in the air and in the natural sea water with various conditions. The main results obtained from the test are summarized as follows: 1) The welded zone of the steel plates has the lowest impact strength and the highest electrode potential, but the hardness was mediate of SM58 base and SM41 base. 2) The cathodic protection of the welded zone was also effective for the plane bending corrosion fatigue, and the optimum protection potential of the welded zone was -1,000 mV SCE. 3) The corrosion fatigue strength under the various stress conditions of the steel plate could be estimated and also the require safety factors on the design could be obtained from the plane bending fatigue limit diagram.

  • PDF

강의 음극방식에 미치는 표면상태와 유속의 영향 (The Effects of Surface Condition and Flow Rate to the Cathodic Protection Potential and Current on Steel)

  • Kyeong-soo, Chung;Seong- Jong, Kim;Myung-Hoon, Lee;Ki-Joon, Kim;Kyung-Man, Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.972-980
    • /
    • 2004
  • Cathodic protection is being widely used to protect steel structures in sea water environment, In order to protect steel structures completely, the flow condition of sea water surrounding with this structures and the surface condition of the structures must be considered for a desirable design of cathodic protection. In this study, the optimum protection potential and current density were investigated in terms of cathodic current density, surface condition and a flow condition of sea water. The optium protection potential of the cleaned specimen was -770 mV(SCE) and below. However in the case of the rusted specimen, its potential was -700 mV(SCE) and below, which was somewhat positive than the cleaned one irrespective of flow condition. The optimum cathodic protection current density for both the cleaned and rusted specimens was 100 mA/$\textrm{m}^2$, however, on the flow condition, 200 mA/$\textrm{m}^2$ to be supplied for cathodic protection of steel structures completely for both cleaned and rusted specimens.

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구 (Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection)

  • 김성종;감정일;김종신
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).