• Title/Summary/Keyword: optimum combustion condition

Search Result 95, Processing Time 0.025 seconds

Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters (자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향)

  • Choi, Sang-Hoon;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide($WO_3$) by self-propagating high-temperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the $WO_3$-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of $WO_3$, Mg and $B_2O_3$. It was found that $WO_3$, Mg and $B_2O_3$ reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of $B_2O_3$ with B successfully solved the diffusion problem. From the optimum condition tungsten boride($W_2B$ and WB) powders which has 0.1~0.9 um particle size were synthesized.

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

A Study of On-line Cleaning Method for Increasing Efficiency in a Combustor (연소로 효율증진을 위한 on-line 세정 방법에 관한 연구)

  • Jang, Hyun-Tae;Han, Seung-Dong;Park, Tae-Sung;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1016-1022
    • /
    • 2010
  • An Experimental study of cleaning solution has been performed on a high capacity steam boiler burning heavy fuel oil to on-line cleaning of deposit. The deposit is mixture of soot, slag, ash, metal oxide and clinker. The traditional technology of deposit cleaning was carried hand-crafted. The conventional technology of boiler cleaning method is mechanical removal by the worker while the boiler shut down operation. In this experiment, the deposit of mixture of soot, slag, ash, metal oxide and clinker has been removed by the cleaning agents without shut down of boiler burning. This study found out the optimum cleaning solution composition. The best results have been obtained when the mixture of ammonium nitrate and $MgNO_3$ were used in cleaning solution. The various transition metal effect was investigated for optimum mixing condition. In this research, the metal compound additive of the clean solution compoition was obtained. The combustion efficiency was improved by on-line cleaning with derived clean solution compoition. On-line cleaning method prevents the fouling and corrosion in the boiler and heat exchanger.

Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer (LPG 연료의 플라즈마 개질 특성연구)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyoung;Cho, Yongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.17-22
    • /
    • 2012
  • In this study, characteristics of reforming process of Automotive LPG fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2$/C ratio, reactant flow rate and plasma power on the process were investigated. In the test of varying $O_2$/C ratio from partial oxidation stoichiometry to combustion stoichiometry, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2$/C ratio for the highest $H_2$ yield was determined to be 0.8~0.9 for 20~50 lpm. The result can be a guide to map optimal condition of reforming process.

Effect of Operating Condition Change on the Conversion Efficiency of TWC with HCNG Engine (운전조건 변화가 HCNG 엔진용 삼원촉매 전환효율에 미치는 영향)

  • Kim, Chang-Gi;Lee, Sung-Won;Yi, Ui-Hyung;Park, Cheol-Woong;Lee, Sun-Youp;Choi, Young;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.40-46
    • /
    • 2015
  • Stoichiometric combustion engine with Three-way catalyst had an advantage that can reduce the harmful emissions effectively. Fuel equivalence ratio controlled from engine is very important because Fuel equivalence ratio with high conversion efficiency was narrow. This study analyzed the conversion efficiency under whole range of operating area for to evaluate the performance of three-way catalyst. In order to identify the Optimum conversion efficiency, the conversion efficiency due to change the control value of fuel equivalence ratio was investigated. The result show that conversion efficiency of emissions(more than 95%) has discovered by means of fuel equivalence ratio control at each test condition. As engine power increases, optimal fuel equivalence ratio tended to increase linearly under operating conditions of similar exhaust gas temperature.

The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber (TiO2 함유 피치섬유의 최적 안정화 조건)

  • Eom, Sang Yong;Lee, Chang Ho;Park, Kwan Ho;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.269-276
    • /
    • 2007
  • $TiO_2$-containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of $TiO_2$ particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of $TiO_2$ concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the $TiO_2$ increase caused by the catalytic activity of $TiO_2$ to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in $TiO_2$ concentration. In the considerations of the aggregation behaviors of the $TiO_2$ particles, the optimum stabilization conditions of 0.5 wt.% $TiO_2$ containing petroleum-based pitch fiber were suggested as $280^{\circ}C$, 3 hr.

Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery (피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발)

  • Chun, Sang-Myung;Lee, Jeong-Keun;Joo, Dae-Heon;Ryu, Kwan-Ho;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

Reaction Parameters on the Reactivity in the Preparation of B4C by SHS (자전연소합성법에 의한 B4C분말의 제조에 있어 반응성에 대한 반응변수의 고찰)

  • Shin, Chang-Yun;Yun, Ki-Seok;Park, Yeong-Cheol;Hayk, Nersisyan;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • The preparation of B4C by SHS in $B_{2}O_{3}-Mg-C$ system was investigated in this study. In the preparation of B4C, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and C in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure B4C was $2B_{2}O_{3}+6.3Mg +0.94C$. The B4C synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.

A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics (전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구)

  • Lee, Geon-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2011
  • The modeling of SDR was carried out for the application of the solid waste incineration system. To find optimum operating condition for removal of acidic gases, computation fluid dynamic(CFD) model was used. In this study, the temperature profile of SDR(spray dry reactor) and the gas velocity profile for different models were investigated. In this model, the diameter of SDR was 3 meter and the height of SDR was 9 meter. The amount of inlet combustion gas of SDR was $6,125Nm^3/hr$ and the inlet temperature of SDR was 493 K. The amount of lime injection of SDR was 151 kg/hr. When the inlet shape of SDR was changed, the temperatur of SDR was changed and the gas velocity of SDR was 0.48 m/sec to 1.17m/sec and the outlet gas velocity of SDR was 6.9 m/sec to 7.42m/sec As a result of modeling, the average velocities in SDR and outlet were 0.489 m/sec and 7.424 m/sec, respectively, in which the temperature of outlet in SDR was 448 K.

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator (고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가)

  • Lim, Sanghyeong;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.17-26
    • /
    • 2016
  • The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.