• Title/Summary/Keyword: optimum catalyst

Search Result 307, Processing Time 0.024 seconds

The mechanical and antimicrobial properties of chitosan crosslinked rayon fabric - Effect of chitosan and epichlorohydrin(ECH) concentration - (키토산 가교처리된 레이온 직물의 역학적특성과 항균성 - 에피클로로히드린과 키토산 농도의 영향 -)

  • Ahn, Jung-Mi;Kim, Min-Ji;Lee, Shin-Hee
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.16-24
    • /
    • 2006
  • The purpose of this study is to improve the defects of chitosan crosslinked viscose rayon by ECH and to describe the change of hand of chitosan crosslinked viscose rayon fabrics. The chitosan crosslinked viscose rayon were manufactured by crosslinking process using ECH as crosslinking agent, 2 wt% aqueous acetic acid as a solvent of chitosan and ECH, and 20 wt% aqueous sodium hydroxide as crosslinking catalyst. Viscose rayon were first immersed in the pad bath of the mixed solution of chitosan and ECH, padded up to 100 wt% wet pick-up on weight of fiber(owf), precured on pin frames at $130^{\circ}C$ for 2 minutes, immersed in NaOH solution and finally wash and dry. Antimicrobial properties of the viscose rayon treated with chitosan were measured by the shake flask C.T.M. 0923 test method with staphylococcus aureus(ATCC 6538) as the microorganism. When the concentration of chitosan was increased chitosan crosslinked viscose rayon's LT, WT, B, 2HB and MIU were increased and G, 2HG, SMD, T and $T_m$ were decreased. On the other hand, WT, EM were decreased and RT was increased at $1{\times}10^{-2}M$ ECH. The optimum condition for crosslinking was that ECH concentration was between $1{\times}10^{-2}M\;and\;5{\times}10^{-2}M$. Antimicrobial effects of rayon fabric treated with chitosan was excellent.

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell (인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구)

  • RHEE, JUNKI;LEE, CHANMIN;JEON, YUKWON;LEE, HONG YEON;PARK, SANG SUN;KIM, TAE YOUNG;KIM, HEESEON;SONG, SOONHO;PARK, JUNG OCK;SHUL, YONG-GUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

The Optimum of $CO_2$ Decomposition using Spinel Phase Magnetite (스피넬상 마그네타이트를 이용한 $CO_2$ 분해의 최적조건)

  • Ryu, Dae-Sun;Hong, Phil-Sun;Lee, Poong-Hun;Kim, Soon-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.901-907
    • /
    • 2001
  • Magnetite was synthesized using $0.2M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by air oxidation method for carbon dioxide decomposition to carbon. The carbon dioxide decomposition was successfully carried out after reduction of ${Fe_3}{O_4}$ for 2 hrs using hydrogen gas. The carbon dioxide decomposition at 325, 350, 375, 400, $425^{\circ}C$, 88% was the highest at $350^{\circ}C$ and the activation energy of ${Fe_3}{O_4}$ in carbon dioxide decomposition was 30.96 kJ/mol. After $CO_2$ decomposition, the carbon of surface of catalyst reacted with hydrogen produced methane.

  • PDF

Hard Coatings on Polycarbonate Plate by Sol-Gel Process (폴리카보네이트 판 위에 졸-겔 과정을 이용한 하드 코팅)

  • Ji, Young Jon;Kim, Hae Young;Yoon, Yeo Seong;Lee, Seung Woo;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2005
  • The hard coatings on the polycarbonate plate were performed with the object of substitution the glass in the car to the polycarbonate plate. In this research, tetraethyl orthosilicate (TEOS), methyltriethoxysilane (MTES) were used to prepare the coatings by sol-gel process. The optimum conditions and formulation to get the excellent physical properties were determined. The pretreatment condition of polycarbonate plate, the mole ratio of TEOS and MTES, selection of the solvent, the aging time, the amount of acid catalyst, and the number of folds of coating were characterized. Pretreatment with poly(methyl methacrylate) was very effective to increase the adhesion strength. The smooth coating which got the 2 H class in pencil hardness was formed in this research by sol-gel process.

  • PDF

Thermal Stabilization of Alumina by Ba Addition (Ba 첨가에 의한 알루미나의 열 안정화 효과)

  • Seo, Doo-Won;Han, Moon-Hee;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.139-145
    • /
    • 1997
  • The effect of Ba addition on the thermal stabilization of $\gamma$-$Al_2O_3$ powders were studied. Ba additive was introduced into $\gamma$-$Al_2O_3$ powders by wet impregnation of $Ba(No_3)_3$.$6H_2O$. Ba additive was proved to be effective on the thermal stabilization of $\gamma$-$Al_2O_3$ powders by suppression of sintering. The optimum content of Ba was determined by 5 mol%, through the calcinations temperature range. It is suggested that the main reason of thermal stabilizaton is the substitution effect of large $Ba^{2+}$ ions into the $\Al^{3+}$ sites, which suppressed the surface diffusion of $\Al^{3+}$ ions.

  • PDF

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

Influence of Binder on Fe-based Extrudate as Fischer-Tropsch Catalysts (Fischer-Tropsch 반응용 Fe계 압출성형촉매 제조에서의 바인더의 영향)

  • Seo, Jeong-Hwan;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Lee, Sang-Bong;Jeong, Soon-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.726-731
    • /
    • 2011
  • The technology enabling the large-scale production of catalysts by extrusion is very important for the commercialization of the Fischer-Tropsch process. In this study, the influence of the binder on the extrudate of Fe-based catalyst well known as FT catalysts has been studied. Inorganic binders such as kaolin, bentonite, alumina sol and silica sol and organic binders were added during extrudate preparation. The extrudates have been prepared with various compositions, and the physicochemical properties of the extrudates have been examined by XRD, BET, PSD, TPR and UTM. The optimum binder composition of extrudate was established by comparing the FT reaction activity.

Production of Biodiesel from High Acid Value Oils using Amberlyst-15 (Amberlyst-15를 이용한 산가가 높은 유지로부터 바이오디젤의 생산)

  • Sim, Yeon-Ju;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.483-489
    • /
    • 2010
  • Biodiesel has attracted great attention as an alternative renewable energy source for the replacement of petroleumbased diesel fuel, yet its high production cost due to expensive oil feedstock remainsas the major economical obstacle. In this study, we investigated catalysts and reaction conditions for the acid catalyzed pre-conversion of free fatty acid (FFA) to fatty acid methyl ester (FAME) in cheap low-grade oils of high acid value. The NaOH base catalyzed reaction of vegetable oil of the initial acid value of 2 mg KOH/g led to a high FAME conversion above 95.4%, but the conversion abruptly decreased at higher initial acid values. This base catalyzed reaction was practically ineffective displaying the FAME conversion below 15% even at the initial acid value of 10 mg KOH/g by the severe saponification side reaction. Among the various catalysts studied for the pre-conversion of FFA to FAME, Amberlyst-15 was the most effective in reducing the acid value, and the optimum reaction condition identified was $65^{\circ}C$ with oil to methanol ratio of 1:3 and catalyst concentration of 15% (w/w). As the results, great enhancements in the overall biodiesel conversion were achievable via a consecutive reaction of the acid catalyzed FFA pre-conversion to FAME under the optimal condition obtained with Amberlyst-15 followed by the NaOH base catalyzed reaction, far above the extent which was obtainable by the single NaOH catalyzed reaction.

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

Development of Urethane Foams for Planting Media from Woodwastes (목질폐재를 이용한 식물식재용 우레탄폼의 개발)

  • Cho, Nam-Seok;Seo, Won-Sung;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • The availability of large quantities of waste woods provides an impetus for investigating woody biomass potential uses. Polyurethane (PU) foams are prepared with reacting isocyanates and polyols, and are used. in various industry fields. Thus, lignocellulosic waste raw-materials are proposed as replacement for synthetic polyol to PU foam formulation. In this study PU foams were manufactured from liquefied woods, methanediisocyanate(MDI), catalyst, foaming stabilizer, and viscosity aids. The polyol content, isocyanate.hydroxyl group (NCO/OH) ratio, and water content were varied to evaluate their effects on the foaming and water absorption of the PU foams. Less than 400 Molecular weight. of polyethylene glycol(PEG) and 1 to 3 solvent to woody raw-material ratio were desirable for liquefying woody materials. Liquefying rate was increased with more than 3 % addition of inorganic and organic catalysts and raising reaction temperature more than $150^{\circ}C$. Addition of starch enhanced liquefying of woody materials. Fourty percents of starch resulted in about 90% liquefying rates. Foaming rates were increased with increasing moisture contents of liquefied wood. Moisture contents of 0.6% resulted in 5 time-foaming rates, and seven percents of moisture contents more than 30 time-foaming rates. But, an increase in water content may result in a decrease in cross-links between wood polyol and isocyanate, because the NCO/OH ratio is constant. Increasing moisture contents have significantly decreased density of PU foams. The optimum water content should be about 2.5% or less in this adopted condition.

  • PDF