• Title/Summary/Keyword: optimization, power systems

Search Result 721, Processing Time 0.028 seconds

Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit

  • Wang, Yi;Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Li, Hui;Xiao, Jinyu;Wang, Zhidong;Shi, Rui;Wang, Shuai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1930-1939
    • /
    • 2015
  • Wind power planning aims to locate and size wind farms optimally. Traditionally, wind power planners tend to choose the wind farms with the richest wind resources to maximize the energy benefit. However, the capacity benefit of wind power should also be considered in large-scale clustered wind farm planning because the correlation among the wind farms exerts an obvious influence on the capacity benefit brought about by the combined wind power. This paper proposes a planning model considering both the energy and the capacity benefit of the wind farms. The capacity benefit is evaluated by the wind power capacity credit. The Ordinal Optimization (OO) Theory, capable of handling problems with non-analytical forms, is applied to address the model. To verify the feasibility and advantages of the model, the proposed model is compared with a widely used genetic algorithm (GA) via a modified IEEE RTS-79 system and the real world case of Ningxia, China. The results show that the diversity of the wind farm enhances the capacity credit of wind power.

Coordinated Control Strategy and Optimization of Composite Energy Storage System Considering Technical and Economic Characteristics

  • Li, Fengbing;Xie, Kaigui;Zhao, Bo;Zhou, Dan;Zhang, Xuesong;Yang, Jiangping
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.847-858
    • /
    • 2015
  • Control strategy and corresponding parameters have significant impacts on the overall technical and economic characteristics of composite energy storage systems (CESS). A better control strategy and optimized control parameters can be used to improve the economic and technical characteristics of CESS, and determine the maximum power and stored energy capacity of CESS. A novel coordinated control strategy is proposed considering the coordination of various energy storage systems in CESS. To describe the degree of coordination, a new index, i.e. state of charge coordinated response margin of supercapacitor energy storage system, is presented. Based on the proposed control strategy and index, an optimization model was formulated to minimize the total equivalent cost in a given period for two purposes. The one is to obtain optimal control parameters of an existing CESS, and the other is to obtain the integrated optimal results of control parameters, maximum power and stored energy capacity for CESS in a given period. Case studies indicate that the developed index, control strategy and optimization model can be extensively applied to optimize the economic and technical characteristics of CESS. In addition, impacts of control parameters are discussed in detail.

Optimization of Control Parameters for Hydraulic Systems Using Genetic Algorithms (유전알고리듬을 이용한 유압시스템의 제어파라메터 최적화)

  • Hyeon, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1462-1469
    • /
    • 1997
  • This study presents a genetic algorithm-based method for optimizing control parameters in fluid power systems. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics. A genetic algorithm seeks control parameters maximizing a measure that evaluates system performance. Five control gains of the PID-PD cascade controller fr an electrohydraulic speed control system with a variable displacement hydraulic motor are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that optimization of the five gains by manual tuning should be a task of great difficulty and that a genetic algorithm is an efficient scheme giving economy of time and in labor in optimizing control parameters of fluid power systems.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

A QEE-Oriented Fair Power Allocation for Two-tier Heterogeneous Networks

  • Ji, Shiyu;Tang, Liangrui;He, Yanhua;Li, Shuxian;Du, Shimo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.1912-1931
    • /
    • 2018
  • In future wireless network, user experience and energy efficiency will play more and more important roles in the communication systems compared to their roles at present. Quality of experience (QoE) and Energy Efficiency (EE) become the widely used metrics. In this paper, we study a combinatorial problem of QoE and EE and investigate a fair power allocation in heterogeneous networks. We first design a new metric, QoE-aware EE (QEE) to reflect the relationship of QoE and energy. Then, the concept of Utopia QEE is introduced, which is defined as the achievable maximum QEE in ideal conditions, for each user. Finally, we transform the power allocation process to an optimization of ratio of QEE and Utopia QEE and use invasive weed optimization (IWO) algorithm to solve the optimization problem. Numerical simulation results indicate that the proposed algorithm can get converged and efficiently improve the system energy efficiency and the QoE for each user.

Real Coded Biogeography-Based Optimization for Environmental Constrained Dynamic Optimal Power Flow

  • Kumar, A. Ramesh;Premalatha, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The optimization is an important role in wide geographical distribution of electrical power market, finding the optimum solution for the operation and design of power systems has become a necessity with the increasing cost of raw materials, depleting energy resources and the ever growing demand for electrical energy. In this paper, the real coded biogeography based optimization is proposed to minimize the operating cost with optimal setting of equality and inequality constraints of thermal power system. The proposed technique aims to improve the real coded searing ability, unravel the prematurity of solution and enhance the population assortment of the biogeography based optimization algorithm by using adaptive Gaussian mutation. This algorithm is demonstrated on the standard IEEE-30 bus system and the comparative results are made with existing population based methods.

An Improved PSO Algorithm for the Classification of Multiple Power Quality Disturbances

  • Zhao, Liquan;Long, Yan
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.116-126
    • /
    • 2019
  • In this paper, an improved one-against-one support vector machine algorithm is used to classify multiple power quality disturbances. To solve the problem of parameter selection, an improved particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. By proposing a new inertia weight expression, the particle swarm optimization algorithm can effectively conduct a global search at the outset and effectively search locally later in a study, which improves the overall classification accuracy. The experimental results show that the improved particle swarm optimization method is more accurate than a grid search algorithm optimization and other improved particle swarm optimizations with regard to its classification of multiple power quality disturbances. Furthermore, the number of support vectors is reduced.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Community Energy Systems (구역전기사업자 구성을 위한 Phasor Discrete Particle Swarm Optimization 알고리즘)

  • Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.55-61
    • /
    • 2009
  • This paper presents a modified Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm to configure Community Energy Systems(CESs) in the distribution system. The CES obtains electric power from its own Distributed Generations(DGs) and purchases insufficient power from the competitive power market, to supply power for customers contracted with the CES. When there are two or more CESs in a network, the CESs will continue the competitive expansion to reduce the total operation cost. The particles of the proposed PDPSO algorithm have magnitude and phase angle values, and move within a circle area. In the case study, the results by PDPSO algorithm was compared with that by the conventional DPSO algorithm.

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar;Christopher Mullen;Soobum Lee;Jaeyun Lee;Jaehoon Kim
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.383-391
    • /
    • 2023
  • Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.