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Abstract – The optimization is an important role in wide geographical distribution of electrical power 
market, finding the optimum solution for the operation and design of power systems has become a 
necessity with the increasing cost of raw materials, depleting energy resources and the ever growing 
demand for electrical energy. In this paper, the real coded biogeography based optimization is 
proposed to minimize the operating cost with optimal setting of equality and inequality constraints of 
thermal power system. The proposed technique aims to improve the real coded searing ability, unravel 
the prematurity of solution and enhance the population assortment of the biogeography based 
optimization algorithm by using adaptive Gaussian mutation. This algorithm is demonstrated on the 
standard IEEE-30 bus system and the comparative results are made with existing population based 
methods. 
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1. Introduction 
 
In competitive electrical power market, electrical energy 

must be offered at a least cost with high quality, which is 
very difficult task for market operator in deregulated power 
system. Optimal power flow (OPF) is the tool for solving 
these complicated problems. The main objective of optimal 
power flow is to obtain optimal operating schedule for each 
generator which minimizes the cost of production and 
satisfies the system equality and inequality constraints. The 
earlier researches are done in different methods of optimal 
power flow. The methods are Linear Programming in [1], 
Nonlinear Programming in [2], Quadratically convergent in 
[3], Newton approach in [4], Interior Point Method in [5, 6] 
and P-Q decomposition in [7].  

In deregulated power system, multiple transactions are 
done every hour and hence loads are varied. Optimal power 
flow is carried out dynamically based on load variation. 
Dynamic optimal power flow (DOPF) is discussed in [8]. 
Thermal power plants are major part of power generation 
in electric power sector, where power is generated by 
burning of fossil fuels. It releases polluted gases in the 
environment. In the concern of environmental awareness, 
pollution should be minimized which is achieved by 
combining cost and emission dispatch in a single objective 
function. Emission constrained economic dispatch is 
discussed in [9].  

Earlier conventional based optimal power flows have 
excellent convergence characteristics, but they could not 
perform well when deal with systems having non-
differentiable objective functions and practical constraints 
with some theoretical assumptions. So researchers concentrate 
towards evolutionary algorithms like as Genetic Algorithm 
[10, 11], Enhanced Genetic Algorithm [12], Evolutionary 
Programming [13], Tabu Search [14], Simulated Annealing 
[15], Particle Swarm Optimization [16], Differential 
Evolution [17], Modified Differential Evolution [18], 
Modified Shuffle Frog Leaping Algorithm [19], and 
Artificial Bee Colony Algorithm [20]. Non – Reliability 
is the disadvantage of these optimization techniques.  

In [21], Biogeography-based Optimization (BBO) 
algorithm was employed by Bhattacharya and Chattopadhyay 
for solving OPF problems. This approach is briefly 
discussed in next section. The probability based random 
mutation is applied in the BBO algorithm, so that the 
population are diverted at the end of the solution. This is 
the main drawbacks of the algorithm. It could be avoided 
by using Gaussian mutation in real coded biogeography 
based optimization (RCBBO). In this paper, RCBBO 
algorithm is discussed, which is applied to dynamic 
optimal power flow problem. The results are compared 
with existing methods. 

 
 

2. Biogeography Based Optimization 
 
The Biogeography-based Optimization (BBO) technique, 

which is proposed by Dan Simon [22] is a comprehensive 
algorithm for solving optimization problems and is 
based on the study of geographical distribution of species. 
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The nature’s way of distributing species is known as 
Biogeography, and is analogous to general problem 
solutions. The BBO technique has two main operators, they 
are migration and mutation. 

 
2.1 Migration operator 

 
Migration is the process that probabilistically modifies 

each individual in the habitat by sharing information with 
other individual solution. Geographical areas with high 
Habitat Suitability Index (HSI) are said to be well suitable 
for biological species. Suitability Index Variables (SIVs) 
are the variables that characterize the habitat of the 
species. Geographical areas with high HSI tends to have a 
large number of species, high emigration rate and low 
immigration rate. Therefore, habitats with high HSI tends 
to be more static in their species distribution compared 
to low HSI habitats. A habitat with high HSI is 
analogous to a good solution and a habitat with low HSI 
is analogous to a poor solution. The sharing of features of 
individuals in the habitat is done based on the migration 
rate. The immigration rate, λk and the emigration rate, μk 
are functions of the number of species in the habitat. When 
there are no species in a habitat, the immigration rate of 
the habitat is maximal. The immigration rate, λk can be 
formulated as: 

 

 1k
kI
nλ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (1) 

 
Where I is maximum possible immigration rate, k is 

number of species of kth individual and n is maximum 
number of species. The emigration rate, μk can be 
formulated as: 

 

 k
kE
n

μ ⎛ ⎞= ⎜ ⎟
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 (2) 

 
Where E is maximum possible emigration rate. 
 

2.2 Mutation operator 
 
The process of mutation tends to increase diversity 

among the individuals in the habitat to get better solution. 
Due to natural events, HSI of habitat is changed drastically. 
It causes a species count differ from its equilibrium value. 
Each species count is associated with probability (Pi). 
Individual’s solution is mutated with other solution if the 
probability is very low. So mutation rate of individual 
solution is calculated by using species count probability. 
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Where Mi is the mutation rate, Mmax is the maximum 

mutation rate which is user defined parameter, and Pmax is 
the maximum probability of species count. 

In BBO, mutation characteristic function is given by:  
 

 ' max min(0,1) ( )i i i iX X rand X X= + × −  (4) 
 

where iX  is the decision variable; max
iX and min

iX  are 
the lower and upper limits of the decision variable, 
respectively. 

The advantages of BBO are that using of probabilistic 
migration can create the better solutions from the poor ones 
by sharing more information. For the meantime, it would 
not loss good solutions at the progress. The main drawback 
of BBO technique is that the migration operator fails to 
improve the exploration ability and the diversity of the 
population. 

 
 

3. Real Coded Biogeography-Based  
Optimization  

 
Real Coded Biogeography-based Optimization (RCBBO) 

is an extension of BBO where individuals are directly 
encrypted by a floating point for the continuous optimi-
zation problems.  

In BBO, individuals are represented by a D–dimensional 
integer vector, whereas in RCBBO individuals are 
represented by a D–dimensional real parameter vector. In 
Real Coded Biogeography Based Optimization technique, 
the assortment of the population is improved and its 
searching ability is enhanced by integrating the mutation 
operator with BBO technique. Mutation operator is intended 
to expose liabilities belonging to the matching fault class. 
Real coded biogeography based optimization is discussed 
in [24], where Gaussian mutation is used probabilistically 
based to modify the original BBO technique. 

In this paper, Gaussian mutation operator is applied to 
improve the worst half of the individuals in the population. 
Adaptive mutation probability is used to prevent premature 
convergence and produce a smooth convergence. This 
method of mutation can be easily used for real-coded 
variables which have been widely used in Evolutionary 
Programming (EP) and it is able to carry out local search as 
well as global search. 

The Gaussian mutation characteristic function is given 
by: 

 
 ' 2( , )i i iX X N μ σ= +  (5) 

 
where 2( , )iN μ σ  represents the Gaussian random variable 
with mean μ and variance σ2. The values of mean and 
variance are considerd 0 and 1, respectively [24]. 

Generally, a probability-based mutation operation is 
known to improve the convergence characteristics. 
Therefore, adaptive Gaussian mutation is applied in the 



Real Coded Biogeography-Based Optimization for Environmental Constrained Dynamic Optimal Power Flow 

 58 │ J Electr Eng Technol.2015;10(1): 56-63 

present work to improve the solution of worst half set of 
habitats in the population.  

In Eq. (5), μ = 0, and iσ  is found using the following 
Eq. [27]: 

 

 ( )max min

1 min

n i
i ii

i

F X X
f

βσ
=

⎛ ⎞
= ∗ ∗ −∑⎜ ⎟

⎝ ⎠
 (6) 

 
where β is the scaling factor or mutation probability, Fi is 
the fittness value of ith individual, and fmin is the minimum 
fitness value of the habitat set in the population. 

Adaptive mutation probability is given by  
 

 max min
max

max

T
T

β ββ β −
= − ×  (7) 

 
where max 1β = , min 0.005β = , Tmax is the maximum 
iteration, and T is the current iteration. The main difference 
between Evolutionary Programming (EP) and Real Coded 
Biogeography-based Optimization (RCBBO) is that it 
makes use of migration operator, which utilizes the 
information of population effectively and the adaptive 
mutation balances the exploitation and exploration ability 
of the RCBBO technique. 

 
 

4. Problem Formulation 
 
Generally, an OPF problem is a large-scale, highly 

constrained nonlinear optimization problem. It may be 
defined as 

 
 min ( , )f x u   (8) 

subject to  ( , ) 0g x u =  (9) 
 ( , ) 0h x u ≤  (10) 

 
where f is the objective function to be minimized, x and u 
are the vectors of dependent and independent control 
variables, respectively, g is the equality constraint, and h is 
the operating constraint.  

The vector of dependent variables can be represented as: 
 

 1 1 1 1, ... , ... , ...T
G L LNpq G GNg L LNlx P V V Q Q S S⎡ ⎤= ⎣ ⎦   (11) 

 
where 1GP  denotes the slack bus power, LV  denotes the 
load bus voltage, GQ  denotes the reactive power output of 
the generator, LS  denotes the transmission line flow, Ng is 
the number of voltage-controlled buses, Npq the number of 
load buses, and Nl is the number of transmission lines. 

The vector of independent control variables can be 
represented as: 

 

 2 1 1 1... , ... , ... , ...
C

T
G GNg G GNg Nt C CNu P P V V T T Q Q⎡ ⎤= ⎣ ⎦   (12) 

where Nt and NC are the number of tap-changing 
transformers and shunt VAR compensators, respectively; 

GP  is the active power output of generators; GV  is the 
voltage at the voltage-controlled bus; T is the tap setting of 
the tap-changing transformer; and CQ  is the output of 
shunt compensating devices. 

 
4.1 Objective function 

 
This paper discusses about two different objective 

functions and combined both functions into single objective 
function to prove the effectiveness of the proposed 
technique based on RCBBO. The objective functions are 
discussed below: 

 
4.1.1 Minimization of fuel cost 

 
This objective function aims to minimize the total fuel 

cost for the operation and planning of power systems under 
varying loads. The objective function is formulated as: 

 

 ( )
1

Ng

Gii
i

FC f P
=

= ∑  (13) 

 
Where FC is the total fuel cost, Ng is the number of 

generators. The fuel cost function for the operation of 
Power Systems can be expressed as: 

 
  ( ) ( ) ( )2

Gi Gi Gii i iif a b cP P P= + +  (14) 
 
Where PGi is the real power output of an ith generator and 

ai, bi and ci are the fuel cost coefficients. 
 

4.1.2 Minimization of environmental pollution 
 
The main goal of this objective function is to minimize 

the environmental pollution caused by the operation of 
thermal power systems. The objective function is 
formulated as: 

 

 ( )
1

Ng

i Gi
i

Em E P
=

= ∑  (15) 

 
Where Em is the total emission generation. The emission 

function can be expressed as: 
 

 ( ) ( ) ( )2
Gi Gi Giii i iE P P Pβ γα= + +  (16) 

 
Where αi, βi and γI are the emission coefficients of the ith 

unit.  
 

4.1.3 Minimization of total cost 
 
The objective functions are combined and formulated 

into a single optimization problem by introducing the Price 
Penalty Factor ‘h’ as follows: 
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 MinimizeTC FC h Em= + ∗  (17) 
 
The procedure of price penalty factor calculation is 

discussed in [25]. 
 

4.2. Constraints  
 

4.2.1 Equality constraints 
 
The equality constraints are the power flow equations 

given by: 
 

 ( )
1

cos 0
NB

Gi Di iji j ij i j
j

V VP P Y θ δ δ
=

− − − + =∑   (18) 

 ( )
1

sin 0
NB

iji j ij i jGi Di
j

Q Q V V Y θ δ δ
=

− − − + =∑  (19) 

 
Where PGi & QGi are the injected active and reactive 

power at ith bus, PDi & QDi is the demanded active and 
reactive power at ith bus, Yij is the admittance between bus i 
and j, θij is the load angle between bus i and j, δi is the 
phase angle of voltage at ith bus and NB is the total number 
of buses. 

 
4.2.2 Inequality constraints 

 
These constraints are the set of continuous and discrete 

constraints that represent the system operational and 
security limits as follows: 

(a) Generator constraints: the generator active and 
reactive power outputs are restricted by their upper and 
lower limits. 

 
 ,min ,max; 1,2,......,Gi Gi Gi gi NP P P≤ ≤ =  (20) 
 ,min ,max; 1,2,......, gGi Gi Gi iQ Q Q N≤ ≤ =  (21) 

 
Where PGi,min & PGi,max are the minimum and maximum 

value of real power generation at ith generator bus, QGi,min 
& QGi,max are the minimum and maximum value of reactive 
power generation at ith generator bus. 

(b) Security constraints: these include the limits on the 
load bus voltage and transmission line flow limits: 

 
 ,min ,max, 1,2,......,i i i pqiV V V N≤ ≤ =  (22) 

 
Where ,miniV  & ,maxiV  are the minimum and maximum 

value of magnitude of voltage at ith load bus and pqN  is 
the number of load bus.  

The power flow limit on transmission line is restricted 
by 

 
 max

k kMVA MVA≤  (23) 
 
Where max

kMVA  is the maximum rating of kth 
transmission line. 

The most common method for handling the inequality 
constraints is to make use of a penalty function. The 
original constrained optimization problem is transformed 
to an unconstrained one by penalizing the inequality 
constraints.  

Finally, the dynamic optimal power flow objective 
function is combined with constraints as 
 

lim 2 lim 2

lim 2 max 2

( ) ( )

( ) ( )

Pg Gi Gi Qg Gi Gi
i Ng i Ng

V i i Pf i i
i Npq i NL

Min F TC P P Q Q

V V MVA MVA

λ λ

λ λ
∈ ∈

∈ ∈

= + − + −∑ ∑

+ − + −∑ ∑
 

 
Where Pgλ , Qgλ , Vλ & Pfλ are the penalty factors.  

If GiP > ,maxGiP then lim
GiP = ,maxGiP otherwise 

If GiP < ,minGiP then lim
GiP = ,minGiP , 

If GiQ > ,maxGiQ then lim
GiQ = ,maxGiQ otherwise 

If GiQ < ,minGiQ then lim
GiQ = ,minGiQ & 

If iV > ,maxiV then lim
iV = ,maxiV otherwise 

If iV < ,miniV then lim
iV = ,miniV  

 
 

4.3 Algorithm 
 
The steps for solving the OPF problem using RCBBO is 

as follows: 

Step 1: Initialization 
Habitat modification probability (Pmod), minimum and 

maximum values of adaptive mutation probability (βmin and 
βmax), maximum immigration and emigration rates for each 
island, maximum species count (P), and maximum 
iterations are initialized. 

Step 2: Generate SIVs for the habitat randomly within 
the feasible region.  

Individuals (control variables) in the habitats are 
initialized as: 

 
 min max min(0,1) ( )ij j j jX X rand X X= + × −  (24) 

 
where i = 1, 2… P, and j = 1, 2… Nvar; Nvar is the number 
of control variables; max

jX and min
jX  are the lower and 

upper limits of jth control variable. 
Step  3: Perform load flow analysis using Newton-

Raphson method and determine the dependent variables. 
Compute the fitness value (HSI) for each habitat set.  

Step  4: Based on the HSI value, elite habitats are 
identified. 

Step 5: Iterative algorithm for optimization: 
(i) Perform migration operation on SIVs of each non-

elite habitat selected for migration. 
(ii) Calculate immigration and emigration rates for each 

habitat set, using Eqs. (1) and (2). 
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(iii) Update the habitat set after migration operation. 
(iv) Recalculate the HSI value of modified habitat set; 

feasibility of the solution is verified and habitat set 
sorted based on new HSI value. 

(iv) Perform mutation operation on the worst half set of 
population by Gaussian adaptive mutation using Eqs. 
(5-7)  

(v) Compute the fitness value (HSI) for each habitat set 
after mutation operation and verify the feasibility of 
the solution. 

(vi) Sort the habitat set based on new HSI value. 
(vii) Stop the iteration counter if the maximum number 

of iterations is reached. 

Step 6: Finally SIVs should satisfy the objective function 
as well as constraints of the problem. 

 
 

5. Simulation Results 
 
The proposed Real Coded Biogeography-based algorithm 

for solving dynamic OPF problem has been applied to 
the IEEE 30-bus test system. The numerical results are 
presented in this section. The results obtained by the 
proposed approach are compared with the results found by 
alternative population-based algorithms reported in the 
literature recently. Power flow calculations by Newton-
Raphson method were performed using the software 
package MATPOWER 4.1 [26]. 

The IEEE-30 bus system has six generators at buses 1, 2, 
5, 8, 11 and 13, and four tap changing transformers. The 
total system demand is 283.4MW for the active power, and 
126.2 MVAR for the reactive power at 100 MVA base. Bus 
1 is taken as the slack bus. The fuel cost and emission co-
efficients for IEEE-30 bus is given in appendix. 

The optimal control parameters for the algorithm are 
chosen from number of simulation results. They are: 
habitat size=50, habitat modification probability = 1, 
immigration probability = 1, step size for numerical 
integration = 1, maximum immigration and emigration rate 
= 1, mutation probability = 0.005 and maximum number 
of iterations = 200. The results show the corresponding 
objective functions for 50 independent trails. 

In the subsequent paragraphs, we discuss the results 
obtained by the proposed RCBBO algorithm and existing 
BBO algorithm [22] with regard to each objective function 
of the OPF problem for standard system demand. The 
optimal settings of control parameters are given in Table 1. 
The bolded values represent the optimal value of respective 
objective functions. 

The robustness of the proposed RCBBO algorithm is 
compared with different optimization techniques, for the 
objective function of minimization of fuel cost is presented 
in Table 2. The first two rows mentioned in the table are 
obtained by our own implementation of algorithms. 
Best fuel cost obtained by the proposed RCBBO was 

799.0908$/h, which is lesser than minimum fuel cost 
obtained using BBO algorithm and solution reported in 
[12, 16-21]. Convergence characteristics of optimization 
methods, considered in this work are depicted in Fig. 1, 
which indicates premature convergence in BBO and 
smooth convergence in RCBBO.  

The robustness of the RCBBO algorithm is compared 
with BBO algorithm for the objective function of minimi-
zation of emission, in Table 3. Convergence characteristics 
of proposed RCBBO algorithm and BBO algorithm for this 
objective function are depicted in Fig. 2. 

Simulation results obtained by proposed RCBBO and 
BBO algorithm for minimization of total cost are presented  

Table 1. Simulation results for minimization of fuel cost 
and emission  

Best fuel cost Best emission Parameter 
RCBBO BBO RCBBO BBO 

PG1(MW) 177.1632 177.4098 111.7876 111.3816
PG2(MW) 48.7043 48.7610 46.5052 45.8533 
PG5(MW) 21.3087 21.2656 35.8822 37.0000 
PG8(MW) 20.9014 21.0000 30.9833 31.0000 
PG11(MW) 11.9608 11.9878 29.9979 30.0000 
PG13(MW) 12.0000 12.0000 32.8148 32.9690 
VG1(p.u) 1.1000 1.0875 1.1000 1.0792 
VG2(p.u) 1.0872 1.0637 1.0893 1.0672 
VG5(p.u) 1.0609 1.0280 1.0677 1.0291 
VG8(p.u) 1.0679 1.0380 1.0786 1.0487 
VG11(p.u) 1.1000 1.1000 1.0989 1.0973 
VG13(p.u) 1.1000 1.1000 1.1000 1.0820 

T6-9 1.0712 1.0000 1.0510 1.0000 
T6-10 0.9000 1.0000 0.9192 1.0000 
T4-12 0.9995 1.0000 0.9915 1.0000 
T28-27 0.9711 0.9913 0.9846 1.0000 

QC10(MVAR) 5.0000 5.0000 4.8701 4.0000 
QC12(MVAR) 5.0000 1.0000 4.9789 5.0000 
QC15(MVAR) 4.9463 3.0000 4.9492 5.0000 
QC17(MVAR) 5.0000 5.0000 4.9981 5.0000 
QC20(MVAR) 4.3900 5.0000 4.7471 4.0000 
QC21(MVAR) 5.0000 5.0000 5.0000 5.0000 
QC23(MVAR) 2.7637 2.7731 2.8051 3.0000 
QC24(MVAR) 5.0000 5.0000 5.0000 5.0000 
QC29(MVAR) 2.5122 3.8239 3.0984 4.0000 

Fuel cost ($/h) 799.0908 800.4022 852.5789 856.2308
Emission(Kg/h) 419.1108 420.1382 331.6470 332.2085
Power loss(MW) 8.6384 9.0242 4.5710 4.8039 
 

Table 2. Comparison of results for minimization of fuel cost

Fuel cost (Kg/h) Methods 
Best Mean Worst 

RCBBO 799.0908 799.5392 800.0281 
BBO 800.4022 801.8500 802.5698 

ABC [20] 800.6600 800.8715 801.8674 
BBO [21] 799.1116 799.1985 799.2042 
PSO [16] 800.41 NA NA 
DE [17] 799.2891 NA NA 

EGA [12] 799.56 NA NA 
MDE [18] 802.376 802.382 802.404 

MSFLA [19] 802.287 802.4138 802.5087 
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in Table 4. Best total cost obtained by the proposed 
RCBBO was 1519.556$/h, which is lesser than minimum 
total cost obtained using BBO algorithm and solution 
reported in [27]. 

For 24 hours load pattern, solution for dynamic optimal 
power flow is obtained by proposed RCBBO and BBO, are 
presented in Tables 5 and Table 6 respectively. The price 
penalty factor for the system demand of 283.4MW is 
2.0534 and 1.7916, for all other demands. Total cost 
obtained for 24 hours by the proposed RCBBO is 
23168.753$, which is 20$ lesser than total cost obtained 
using BBO algorithm. From the results, RCBBO based 
DOPF is perceived which provides higher lead to terms of 
accuracy and reliability. 

Table 3. Comparison of results for minimization of emission

Emission(Kg/h) Method 
Best Mean Worst 

RCBBO 331.6470 332.3868 332.8725 
BBO 332.2085 332.7410 332.2545 

 
Table 4. Comparison of results for minimization of total 

cost  

Method Price penalty 
factor 

Fuel cost 
($/h) 

Emission 
(Kg/h) 

Total cost 
($/h) 

RCBBO 2.0534 828.852 336.378 1519.556
BBO 2.0534 829.405 336.936 1521.256

PSO [27] 2.3384 835.5655 337.2407 1624 
 

 
Fig. 1. Convergence characteristics for objective function - 

minimization of fuel cost 

Table 5. Result obtained for DOPF using RCBBO method 

Power Injected active power (MW) Power Fuel Emission Total Hour 
Demand (MW) Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Loss (MW) Cost ($/h) (Kg/h) Cost ($/h)

1 166 85.364 29.000 18.000 12.000 12.000 12.000 2.364 421.172 176.147 736.763 
2 196 96.482 34.042 20.557 17.224 15.406 15.334 3.044 517.177 207.089  888.204
3 229 107.521 39.727 23.567 22.551 19.651 19.722 3.740 628.847 248.857 1074.705
4 267 120.391 46.494 27.138 28.604 24.622 24.667 4.917 765.521 308.268 1317.823
5 283.4 124.336 49.161 29.134 31.428 27.188 27.470 5.317 828.852 336.378 1519.556
6 272 122.200 47.297 27.669 29.487 25.099 25.305 5.057 783.885 316.982 1351.799
7 246 113.258 42.698 25.140 25.298 21.857 21.976 4.227 688.956 273.929 1179.734
8 213 102.052 36.906 22.134 19.909 17.623 17.689 3.312 573.862 227.350  981.189
9 192 96.189 31.000 20.681 17.000 15.000 15.000 2.869 504.463 202.337  866.974

10 161 83.783 27.668 17.329 11.449 11.009 12.000 2.238 405.761 171.573  713.155
11 147 77.367 24.000 15.580 10.000 10.000 12.000 1.947 365.445 159.329  650.902
12 160 83.600 28.000 16.717 11.000 11.000 12.000 2.317 402.696 170.927  708.933
13 170 87.050 30.000 18.000 13.000 12.141 12.209 2.399 433.136 179.987  755.605
14 185 92.517 32.010 19.597 15.388 14.127 14.078 2.717 481.223 194.811  830.252
15 208 100.406 36.000 22.000 19.000 17.213 16.677 3.296 557.337 221.227  953.693
16 232 108.406 40.294 23.927 23.026 20.046 20.118 3.817 639.429 253.058 1092.815
17 246 113.216 42.774 25.176 25.223 21.868 22.082 4.338 689.436 274.052 1180.436
18 241 111.535 42.000 25.000 24.133 21.155 21.555 4.379 672.379 266.645 1150.108
19 236 109.739 40.972 24.276 23.841 20.559 20.681 4.069 654.031 259.021 1118.100
20 225 106.060 39.006 23.236 21.762 19.290 19.284 3.638 615.167 243.216 1050.919
21 204  98.675 35.242 21.206 18.495 16.522 17.039 3.178 544.307 216.069  931.422
22 182 89.766 32.462 19.601 14.687 13.601 14.585 2.702 472.646 191.440  815.636
23 161 83.892 27.696 17.271 11.439 10.868 12.001 2.167 405.409 171.573  712.804
24 131  65.331 20.000 15.000 10.000 10.000 12.000 1.331 323.164 147.387  587.226

Total cost for 24 hours 23168.753

 
Fig. 2. Convergence characteristics for objective function -

minimization of emission 
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6. Conclusion 
 
In this paper, real coded biogeography based optimization 

algorithm is developed and successfully applied to solve 
the environmental constrained dynamic optimal power 
flow problems. This approach is tested and examined with 
combined multi- objective functions including the generator 
constraints and security constraints to show its effectiveness 
using the IEEE 30-bus system. The results obtained from 
the RCBBO approach are compared with those reported in 
the recent literature. The superiority and solution quality of 
the proposed method are found better than other techniques. 
According to the results obtained, the RCBBO algorithm has 
a simple framework and quick convergence characteristic 
and, therefore, can be used to solve the OPF problem in 
large-scale power systems with several thousands of buses 
utilizing the strength of parallel computing. 

 
 

Appendix 
 
Fuel cost and emission co-efficients  
 

Bus.No. a b c α β γ 
1 0 2.00 0.00375 22.983 -1.1000 0.0126 
2 0 1.75 0.01750 22.313 -0.1000 0.0200 
5 0 1.00 0.06250 25.505 -0.1000 0.0270 
8 0 3.25 0.00834 24.900 -0.0050 0.0291 
11 0 3.00 0.02500 24.700 -0.0400 0.0290 
13 0 3.00 0.02500 25.300 -0.0055 0.0271 
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