• Title/Summary/Keyword: optimal thresholds

Search Result 91, Processing Time 0.042 seconds

A Multi-thresholding Approach Improved with Otsu's Method (Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법)

  • Li Zhe-Xue;Kim Sang-Woon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.29-37
    • /
    • 2006
  • Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding employed the normalized histogram as a discrete probability density function. Also it utilized a criterion that minimizes the between-class variance of pixel intensity to choose a threshold value for segmentation. However, the Otsu's method has a disadvantage of repeatedly searching optimal thresholds for the entire range. In this paper, a simple but fast multi-level thresholding approach is proposed by means of extending the Otsu's method. Rather than invoke the Otsu's method for the entire gray range, we advocate that the gray-level range of an image be first divided into smaller sub-ranges, and that the multi-level thresholds be achieved by iteratively invoking this dividing process. Initially, in the proposed method, the gray range of the object image is divided into 2 classes with a threshold value. Here, the threshold value for segmentation is selected by invoking the Otsu's method for the entire range. Following this, the two classes are divided into 4 classes again by applying the Otsu's method to each of the divided sub-ranges. This process is repeatedly performed until the required number of thresholds is obtained. Our experimental results for three benchmark images and fifty faces show a possibility that the proposed method could be used efficiently for pattern matching and face recognition.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

Fast Motion Estimation Algorithm using Filters of Multiple Thresholds (다중 문턱치 필터를 이용한 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.199-205
    • /
    • 2018
  • So many fast motion estimation algorithms for prediction quality and computational reduction have been published due to tremendous computations of full search algorithm. In the paper, we suggest an algorithm that reduces computation effectively, while keeping prediction quality as almost same as that of the full search. The proposed algorithm based on multiple threshold filter calculates the sum of partial block matching error for each candidate, selects the candidates for the next step, compares the stability of optimal candidates with minimum error, removes impossible candidates, and calculates optimal motion vectors by determining the progress of the next step. By doing that, we can find the minimum error point as soon as possible and obtain the better performance of calculation speed by reducing unnecessary computations. The proposed algorithm can be combined with conventional fast motion estimation algorithms as well as by itself, further reduce computation while keeping the prediction quality as almost same as the algorithms, and prove it in the experimental results.

Analysis of Joint Multiband Sensing-Time M-QAM Signal Detection in Cognitive Radios

  • Tariq, Sana;Ghafoor, Abdul;Farooq, Salma Zainab
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.892-899
    • /
    • 2012
  • We analyze a wideband spectrum in a cognitive radio (CR) network by employing the optimal adaptive multiband sensing-time joint detection framework. This framework detects a wideband M-ary quadrature amplitude modulation (M-QAM) primary signal over multiple nonoverlapping narrowband Gaussian channels, using the energy detection technique so as to maximize the throughput in CR networks while limiting interference with the primary network. The signal detection problem is formulated as an optimization problem to maximize the aggregate achievable secondary throughput capacity by jointly optimizing the sensing duration and individual detection thresholds under the overall interference imposed on the primary network. It is shown that the detection problems can be solved as convex optimization problems if certain practical constraints are applied. Simulation results show that the framework under consideration achieves much better performance for M-QAM than for binary phase-shift keying or any real modulation scheme.

Optimal Criterion of Classification Accuracy Measures for Normal Mixture (정규혼합에서 분류정확도 측도들의 최적기준)

  • Yoo, Hyun-Sang;Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.343-355
    • /
    • 2011
  • For a data with the assumption of the mixture distribution, it is important to find an appropriate threshold and evaluate its performance. The relationship is found of well-known nine classification accuracy measures such as MVD, Youden's index, the closest-to-(0, 1) criterion, the amended closest-to-(0, 1) criterion, SSS, symmetry point, accuracy area, TA, TR. Then some conditions of these measures are categorized into seven groups. Under the normal mixture assumption, we calculate thresholds based on these measures and obtain the corresponding type I and II errors. We could explore that which classification measure has minimum type I and II errors for estimated mixture distribution to understand the strength and weakness of these classification measures.

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • Jang, Yeong-Sik;Kim, Jong-U;Heo, Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

Supervised Model for Identifying Differentially Expressed Genes in DNA Microarray Gene Expression Dataset Using Biological Pathway Information

  • Chung, Tae Su;Kim, Keewon;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • Microarray technology makes it possible to measure the expressions of tens of thousands of genes simultaneously under various experimental conditions. Identifying differentially expressed genes in each single experimental condition is one of the most common first steps in microarray gene expression data analysis. Reasonable choices of thresholds for determining differentially expressed genes are used for the next-stap-analysis with suitable statistical significances. We present a supervised model for identifying DEGs using pathway information based on the global connectivity structure. Pathway information can be regarded as a collection of biological knowledge, thus we are trying to determine the optimal threshold so that the consequential connectivity structure can be the most compatible with the existing pathway information. The significant feature of our model is that it uses established knowledge as a reference to determine the direction of analyzing microarray dataset. In the most of previous work, only intrinsic information in the miroarray is used for the identifying DEGs. We hope that our proposed method could contribute to construct biologically meaningful structure from microarray datasets.

Determining differentially expressed genes in a microarray expression dataset based on the global connectivity structure of pathway information

  • Chung, Tae-Su;Kim, Kee-Won;Lee, Hye-Won;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.124-130
    • /
    • 2004
  • Microarray expression datasets are incessantly cumulated with the aid of recent technological advances. One of the first steps for analyzing these data under various experimental conditions is determining differentially expressed genes (DEGs) in each condition. Reasonable choices of thresholds for determining differentially expressed genes are used for the next -step-analysis with suitable statistical significances. We present a model for identifying DEGs using pathway information based on the global connectivity structure. Pathway information can be regarded as a collection of biological knowledge, thus we are tying to determine the optimal threshold so that the consequential connectivity structure can be the most compatible with the existing pathway information. The significant feature of our model is that it uses established knowledge as a reference to determine the direction of analyzing microarray dataset. In the most of previous work, only intrinsic information in the miroarray is used for the identifying DEGs. We hope that our proposed method could contribute to construct biologically meaningful network structure from microarray datasets.

  • PDF

High Speed Self-Adaptive Algorithms for Implementation in a 3-D Vision Sensor (3-D 비젼센서를 위한 고속 자동선택 알고리즘)

  • Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this paper, we present an original stereo vision system which comprises two process: 1. An image segmentation algorithm based on new concept called declivity and using automatic thresholds. 2. A new stereo matching algorithm based on an optimal path search. This path is obtained by dynamic programming method which uses the threshold values calculated during the segmentation process. At present, a complete depth map of indoor scene only needs about 3 s on a Sun workstation IPX, and this time will be reduced to a few tenth of second on a specialised architecture based on several DSPs which is currently under consideration.

  • PDF

Partial AUC using the sensitivity and specificity lines (민감도와 특이도 직선을 이용한 부분 AUC)

  • Hong, Chong Sun;Jang, Dong Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.541-553
    • /
    • 2020
  • The receiver operating characteristic (ROC) curve is expressed as both sensitivity and specificity; in addition, some optimal thresholds using the ROC curve are also represented with both sensitivity and specificity. In addition to the sensitivity and specificity, the expected usefulness function is considered as disease prevalence and usefulness. In particular, partial the area under the ROC curve (AUC) on a certain range should be compared when the AUCs of the crossing ROC curves have similar values. In this study, partial AUCs representing high sensitivity and specificity are proposed by using sensitivity and specificity lines, respectively. Assume various distribution functions with ROC curves that are crossing and AUCs that have the same value. We propose a method to improve the discriminant power of the classification models while comparing the partial AUCs obtained using sensitivity and specificity lines.