• Title/Summary/Keyword: optimal solutions

Search Result 1,388, Processing Time 0.03 seconds

FUZZY GOAL PROGRAMMING FOR CRASHING ACTIVITIES IN CONSTRUCTION INDUSTRY

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.642-652
    • /
    • 2007
  • Many contracting firms and project managers in the construction industry have started to utilize multi objective optimization methods to handle multiple conflicting goals for completing the project within the stipulated time and budget with required quality and safety. These optimization methods have increased the pressure on decision makers to search for an optimal resources utilization plan that optimizes simultaneously the total project cost, completion time, and crashing cost by considering indirect cost, contractual penalty cost etc., practically charging them in terms of direct cost of the project which is fuzzy in nature. This paper presents a multiple fuzzy goal programming model (MFGP) that supports decision makers in performing the challenging task. The model incorporates the fuzziness which stems from the imprecise aspiration levels attained by the decision maker to these objectives that are quantified through fuzzy linear membership function. The membership values of these objectives are then maximized which forms the fuzzy decision. The problem is solved using LINGO 8 optimization solver and the best compromise solution is identified. Comparison between solutions of MFGP, fuzzy multi objective linear programming (FMOLP) and multiple goal programming (MGP) are also presented. Additionally, an interactive decision making process is developed to enable the decision maker to interact with the system in modifying the fuzzy data and model parameters until a satisfactory solution is obtained. A case study is considered to demonstrate the feasibility of the proposed model for optimization of project network parameters in the construction industry.

  • PDF

Understanding the Current State of Deep Learning Application to Water-related Disaster Management in Developing Countries

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.145-145
    • /
    • 2022
  • Availability of abundant water resources data in developing countries is a great concern that has hindered the adoption of deep learning techniques (DL) for disaster prevention and mitigation. On the contrary, over the last two decades, a sizeable amount of DL publication in disaster management emanated from developed countries with efficient data management systems. To understand the current state of DL adoption for solving water-related disaster management in developing countries, an extensive bibliometric review coupled with a theory-based analysis of related research documents is conducted from 2003 - 2022 using Web of Science, Scopus, VOSviewer software and PRISMA model. Results show that four major disasters - pluvial / fluvial flooding, land subsidence, drought and snow avalanche are the most prevalent. Also, recurrent flash floods and landslides caused by irregular rainfall pattern, abundant freshwater and mountainous terrains made India the only developing country with an impressive DL adoption rate of 50% publication count, thereby setting the pace for other developing countries. Further analysis indicates that economically-disadvantaged countries will experience a delay in DL implementation based on their Human Development Index (HDI) because DL implementation is capital-intensive. COVID-19 among other factors is identified as a driver of DL. Although, the Long Short Term Model (LSTM) model is the most frequently used, but optimal model performance is not limited to a certain model. Each DL model performs based on defined modelling objectives. Furthermore, effect of input data size shows no clear relationship with model performance while final model deployment in solving disaster problems in real-life scenarios is lacking. Therefore, data augmentation and transfer learning are recommended to solve data management problems. Intensive research, training, innovation, deployment using cheap web-based servers, APIs and nature-based solutions are encouraged to enhance disaster preparedness.

  • PDF

Integration of Integer Programming and Neighborhood Search Algorithm for Solving a Nonlinear Optimization Problem (비선형 최적화 문제의 해결을 위한 정수계획법과 이웃해 탐색 기법의 결합)

  • Hwang, Jun-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.27-35
    • /
    • 2009
  • Integer programming is a very effective technique for searching optimal solution of combinatorial optimization problems. However, its applicability is limited to linear models. In this paper, I propose an effective method for solving a nonlinear optimization problem by integrating the powerful search performance of integer programming and the flexibility of neighborhood search algorithms. In the first phase, integer programming is executed with subproblem which can be represented as a linear form from the given problem. In the second phase, a neighborhood search algorithm is executed with the whole problem by taking the result of the first phase as the initial solution. Through the experimental results using a nonlinear maximal covering problem, I confirmed that such a simple integration method can produce far better solutions than a neighborhood search algorithm alone. It is estimated that the success is primarily due to the powerful performance of integer programming.

The Impact of Coffee Shop Franchise CEO Leadership on Innovation Performance: Mediating Role of Organizational Trust (커피프랜차이즈 최고경영자의 리더십이 혁신성과에 미치는 영향: 조직신뢰의 매개효과)

  • Kang, Tae-Won;Yang, Hyun-Keun
    • The Korean Journal of Franchise Management
    • /
    • v.7 no.2
    • /
    • pp.37-45
    • /
    • 2016
  • Purpose - This study aims to examine the impact of leadership on organizational trust and innovation performance, and to identify whether organizational trust plays a mediating role in the relationship between leadership and innovation performance. Also, this study attempts to find out how to improve organizational efficiency and effectiveness based on leadership-based or trust-based strategies. And, this research proposed that organizational trust plays a core mediating role in the relationship between transactional and transformational leadership and innovation performance. Research design, data, and methodology - In order to test the hypotheses of this study, the survey was conducted towards franchise coffee shop employees between November 7 and 18, 2016. We contacted top executives of coffee shop franchise headquarters and explained the purpose of this study. Among 150 questionnaires distributed, 123 were collected. Of these collected questionnaires, 102 questionnaires were coded and analyzed for further analysis. In order to test the unidimensionality and reliability of the factors, factor analysis and reliability test were performed using SPSS/PC+ 22.0. And, the hypotheses were tested using hierarchical mediated regression analysis. Result - The results are as follows. First, transactional leadership, and intellectual stimulation, motivation of transformational leadership had significant impacts on organizational trust. Second, organizational trust, transactional leadership, and influence of transformational leadership had significant impacts on innovation performance. Third, the mediating test of organizational trust showed that transactional leadership plays a partial mediator, and intellectual of transformational leadership plays a full mediator in the relationship between leadership and innovation performance. Conclusions - The implications of this study are as follows. First, the top management should provide their organizational members incentives or rewards based on their performance. Second, top management should identify and express a clear vision and desirable organizational goals for the future, present an idealized vision, and communicate to organizational members that the vision is achievable, also have organizational members to think creatively and find optimal solutions to difficult problems. In sum, this study revealed the important role of leadership in embedding organizational trust in and improving innovation performance of coffee shop employees and the mediating role of organizational trust in the influence of leadership on innovation performance.

Smart City Framework Based on Geospatial Information Standards (공간정보 표준기반 스마트시티 프레임워크)

  • Eunbi Ko;Guk Sik Jeong;Kyoung Cheol Koo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • Modern cities are actively adopting smart city services to address various urban challenges. Geospatial information acts as the foundational infrastructure of smart cities, promoting the sustainable development of urban areas. Consequently, as the standardization and utilization of geospatial information increase, the efficiency and sustainability of smart city operations improve. To achieve this, collaboration among diverse stakeholders is crucial for delivering optimal smart city services based on geospatial information. This paper defines smart city services, focusing on transportation and building-energy domains, based on the life cycle of geospatial information technology. Emphasis is placed on the importance of applying and utilizing geospatial information standards. Additionally, this paper proposes the Smart City based on Geospatial Information standards (SCGI) framework to provide insights into standardizing smart city services mapped to geospatial information standards. This research suggests a new paradigm for standardizing smart city services using geospatial information standards to offer customized solutions, thereby discussing the future development possibilities of smart cities.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Optimization of Growth Environments Based on Meteorological and Environmental Sensor Data (기상 및 환경 센서 데이터 기반 생육 환경 최적화 연구)

  • Sook Lye Jeon;Jinheung Lee;Sung Eok Kim;Jeonghwan Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.230-236
    • /
    • 2024
  • This study aimed to analyze the environmental factors affecting tomato growth by examining the correlation between weather and growth environment sensor data from P Smart Farm located in Gwangseok-myeon, Nonsan-si, Chungcheongnam-do. Key environmental variables such as the temperature, humidity, sunlight hours, solar radiation, and daily light integral (DLI) significantly affect tomato growth. The optimal temperature and DLI conditions play crucial roles in enhancing tomato growth and the photosynthetic efficiency. In this study, we developed a model to correct and predict the time-series variations in internal environmental sensor data using external weather sensor data. A linear regression analysis model was employed to estimate the external temperature variations and internal DLI values of P Smart Farm. Then, regression equations were derived based on these data. The analysis verified that the estimated variations in external temperature and internal DLI are explained effectively by the regression models. In this research, we analyzed and monitored smart-farm growth environment data based on weather sensor data. Thereby, we obtained an optimized model for the temperature and light conditions crucial for tomato growth. Additionally, the study emphasizes the importance of sensor-based data analysis in dynamically adjusting the tomato growth environment according to the variations in weather and growth conditions. The observations of this study indicate that analytical solutions using public weather data can provide data-driven operational experiences and productivity improvements for small- and medium-sized facility farms that cannot afford expensive sensors.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

Applications of Fuzzy Theory on The Location Decision of Logistics Facilities (퍼지이론을 이용한 물류단지 입지 및 규모결정에 관한 연구)

  • 이승재;정창무;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.

  • PDF

An Efficient Heuristic for Storage Location Assignment and Reallocation for Products of Different Brands at Internet Shopping Malls for Clothing (의류 인터넷 쇼핑몰에서 브랜드를 고려한 상품 입고 및 재배치 방법 연구)

  • Song, Yong-Uk;Ahn, Byung-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.129-141
    • /
    • 2010
  • An Internet shopping mall for clothing operates a warehouse for packing and shipping products to fulfill its orders. All the products in the warehouse are put into the boxes of same brands and the boxes are stored in a row on shelves equiped in the warehouse. To make picking and managing easy, boxes of the same brands are located side by side on the shelves. When new products arrive to the warehouse for storage, the products of a brand are put into boxes and those boxes are located adjacent to the boxes of the same brand. If there is not enough space for the new coming boxes, however, some boxes of other brands should be moved away and then the new coming boxes are located adjacent in the resultant vacant spaces. We want to minimize the movement of the existing boxes of other brands to another places on the shelves during the warehousing of new coming boxes, while all the boxes of the same brand are kept side by side on the shelves. Firstly, we define the adjacency of boxes by looking the shelves as an one dimensional series of spaces to store boxes, i.e. cells, tagging the series of cells by a series of numbers starting from one, and considering any two boxes stored in the cells to be adjacent to each other if their cell numbers are continuous from one number to the other number. After that, we tried to formulate the problem into an integer programming model to obtain an optimal solution. An integer programming formulation and Branch-and-Bound technique for this problem may not be tractable because it would take too long time to solve the problem considering the number of the cells or boxes in the warehouse and the computing power of the Internet shopping mall. As an alternative approach, we designed a fast heuristic method for this reallocation problem by focusing on just the unused spaces-empty cells-on the shelves, which results in an assignment problem model. In this approach, the new coming boxes are assigned to each empty cells and then those boxes are reorganized so that the boxes of a brand are adjacent to each other. The objective of this new approach is to minimize the movement of the boxes during the reorganization process while keeping the boxes of a brand adjacent to each other. The approach, however, does not ensure the optimality of the solution in terms of the original problem, that is, the problem to minimize the movement of existing boxes while keeping boxes of the same brands adjacent to each other. Even though this heuristic method may produce a suboptimal solution, we could obtain a satisfactory solution within a satisfactory time, which are acceptable by real world experts. In order to justify the quality of the solution by the heuristic approach, we generate 100 problems randomly, in which the number of cells spans from 2,000 to 4,000, solve the problems by both of our heuristic approach and the original integer programming approach using a commercial optimization software package, and then compare the heuristic solutions with their corresponding optimal solutions in terms of solution time and the number of movement of boxes. We also implement our heuristic approach into a storage location assignment system for the Internet shopping mall.