• 제목/요약/키워드: optimal solidification conditions

검색결과 11건 처리시간 0.02초

정수슬러지로부터 중금속 용출 억제를 위한 최적 고화조건 (Optimal Solidification Conditions for Suppression of Heavy Metal Elution from Water Treatment Sludge)

  • 이병대;김영찬;이진식
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.379-384
    • /
    • 2005
  • In general, water treatment sludge (WTS) had high concentration of heavy metal, thus it made the reuse or recycling of WTS difficult. The optimal solidification conditions for maximum suppression of heavy metal elution from WTS were decided in this study. Under the optimal solidification conditions (i.e., temperature, $320^{\circ}C;$ ratio of WTS and MgO, 9:1; solidification time, 1hr), all of heavy metal including aluminum were not detected. Therefore there are no problems for reuse or recycling of WTS which was solidified under the optimal solidification conditions found in the study.

Bloom 연주기의 최적 냉각조건 도출을 위한 응고 시뮬레이션 (Solidification Simulation for Optimal Cooling of Bloom Type Continuous Casting Machine)

  • 정영진;김영모;조기현;강충길
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1629-1636
    • /
    • 2004
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which show the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperature measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone actually used at field fur 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows a similar tendency with that of previous studies, and optimized cooling conditions for 0.187%C are presented.

Bloom type 연주기의 냉각패턴 평가를 위한 응고해석 (Solidification Analysis for Evaluation of Cooling Pattern in Bloom Type Continuous Caster)

  • 정영진;김영모;조기현;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.51-54
    • /
    • 2003
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which shows the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperatures measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone which is actually used at field for 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows good agreements with that of previously studies by other authors and optimized cooling conditions for 0.187%C are presented.

  • PDF

고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건 (Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique)

  • 이동주;신익재;김홍건
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

고속압밀 열가소성수지 복합재료의 인장 특성 (Tensile Properties of Rapid Consolidated Thermoplastic Composites)

  • 김홍건;최창용;유기현;김성철;양성모;노홍길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.504-507
    • /
    • 2002
  • Glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear, and impact properties. A tensile test was attempted to investigate the mechanical properties of the composite. It is found that the level of crystallinity and microstructure affects on the tensile properties substantially.

  • PDF

Fabrication and Characterization of Zr and Hf Containing Vitrified Forms of Radioactive Waste

  • Young Hwan Hwang;Seong-Sik Shin;Sunghoon Hong;Jung-Kwon Son;Cheon-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제22권2호
    • /
    • pp.173-183
    • /
    • 2024
  • Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.

직조유리섬유강화 PET수지 복합체의 인장특성에 관한 연구 (A Study on the Tensile Strength of Glass Woven Fiber Reinforced PET Composites)

  • 김홍건;최창용
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.45-49
    • /
    • 2003
  • Tensile strength of the woven glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite manufactured by rapid press consolidation technique was investigated and evaluated. During pre-heating, consolidation and solidification stages, the optimal manufacturing conditions for this composite were discussed based on the void content and tensile properties depending on vacuum condition. It is found that the effect of vacuum condition during preheating gives a substantial difference on the strength as well as microstructure. It is also found that the failure micromechanism shows several energy absorption processes enhancing fracture toughness.

CAE을 이용한 주조방안설계 : 자동차용 부품(오일팬_BR2E) (Casting Layout Design Using CAE Simulation : Automotive Part(Oil Pan_BR2E))

  • 권홍규
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.35-40
    • /
    • 2017
  • A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.

이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구 (Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging)

  • 유승훈;우호길
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

생약 추출물 함유 정제 제조를 위한 이산화규소 함유 분말의 제조 및 평가 (Fabrication and Characterization of Bangpungtongseong-San Extract-loaded Particles for Tablet Dosage Form)

  • 박진우;진성규
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.227-232
    • /
    • 2021
  • The purpose of this study is to optimize the powder formulation and manufacturing conditions for the solidification of an extract of the herb Bangpungtongseong-san (BPTS). To develop BPTS-loaded particles for the tablet dosage form, various BPTS-loaded particles composed of BPTS, dextrin, microcrystalline cellulose (MCC), silicon dioxide, ethanol, and water are prepared using spray-drying and high shear granulation (high-speed mixing). Their physical properties are evaluated using scanning electron microscopy and measurements of the angle of repose, Hausner ratio, Carr's index, hardness, and disintegration time. The optimal BPTS-loaded particles exhibit improved flowability and compressibility. In particular, the BPTS-loaded particles containing silicon dioxide show significantly improved flowability and compressibility (the angle of repose, Hausner ratio, and Carr's index are 35.27 ± 0.58°, 1.18 ± 0.06, and 15.67 ± 1.68%, respectively), hardness (18.97 ± 1.00 KP), and disintegration time (17.60 ± 1.50 min) compared to those without silicon dioxide. Therefore, this study suggests that particles prepared by high-speed mixing can be used to greatly improve the flowability and compressibility of BPTS using MCC and silicon dioxide.