• Title/Summary/Keyword: optimal shapes

Search Result 432, Processing Time 0.032 seconds

Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race (원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구)

  • Kim, Hwa-Jeong;Jin, Chul-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

Dynamic Stability Analysis of Clamped-Hinged Columns with Constant Volume (일정체적 고정-회전 기둥의 동적안정 해석)

  • Kim, Suk-Ki;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1074-1081
    • /
    • 2006
  • This paper deals with the dynamic stability analysis of clamped-hinged columns with constant volume. Numerical methods are developed for solving natural frequencies and buckling loads of such columns, subjected to an axial compressive load. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are always held constant. Differential equations governing both free vibrations and buckled shapes of such columns are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. The numerical methods developed herein for computing natural frequencies and buckling loads are found to be efficient and robust. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are reported in figures and tables.

Analysis of the Turbulent Heat/Fluid Flow in a Ribbed Channel for Various Rib Shapes (채널 내 주기적으로 배열된 요철 형상이 난류 유동장/온도장에 미치는 영향 연구)

  • Choi D. H.;Ryu D. N.;Han Y. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.128-133
    • /
    • 2002
  • The heat transfer characteristics of a turbulent flow in a ribbed two-dimensional channel have been investigated numerically. The fully elliptic governing equations, coupled with a four-equation turbulence model, $\kappa-\omega-\bar{t^2}-\epsilon_t$, are solved by a finite volume method of SIMPLE type. Calculations have been carried out for three rib cross-sections : square, triangular, and semicircular, with various rib pitches and Reynolds numbers. The procedure appears to be satisfactory as the results for the square rib compare favorably with available experimental data and earlier calculation. The optimal rib pitch that yields the maximum heat transfer has been identified. It is also found that the square rib is most effective in enhancing the heat transfer. The semicircular rib, on the other hand, incurs the least amount of pressure drop but the improvement in heat transfer is substantially lower.

  • PDF

A Study on the Most Suitable Shape of 3-Dimensional Bottom Roughness with Directional Resistance Properties (방향성 저항특성을 가진 3차원 저면조도의 최적형상에 관한 연구)

  • 국승기
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.441-450
    • /
    • 2000
  • In order to improve the water quality in semi-enclosed bays, Gug et al. (1997) have proposed a new method to activate the tidal exchange by creation and control of tidal residual current through the addition of artificial elements to creation and control of tidal residual current through the addition of artificial elements to create bottom roughness, so, ot is advisable to arrange as few of these as possible from a point of cost-benefit view. This paper attempts to develop the most suitable shape of artificial bottom roughness units with which to create and control an optimal tidal residual current. Several simple shapes were examined as fundamental cases. Subsequently 38 types of artificial bottom roughness units based on a few simple effective shapes, were examined experimentally. As a result of this research, two types to create artificial roughness.

  • PDF

Comparison of Performance of Flexible Solar Cells construction applied to Curtain Walls (커튼 월에 적용하는 플랙시블 태양전지의 모양에 따른 성능 비교)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.163-168
    • /
    • 2018
  • In this paper presents comparison of performance of flexible solar cells construction applied to curtain walls. The proposed paper compares power generation for curtain walls of various shapes using flexible PV. Through the comparison of performance, the power generation was compared by installing various types of flexible PV on the air layer of double windows. By comparing the measured power generation, it is possible to find an optimal flexible PV shape that can be applied to a curtain wall. Flexible PV installation was divided into diagonal, S and W shapes. As a result of comparison, the amount of power generation when there was no flexure of flexible PV was large. Also, as the angle with the light source increased, the power generation decreased. Therefore, it is necessary to study the structure which can fix the PV more than the flexible PV and to be able to direct the sun without distortion.

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

Effect of Oil Groove Shapes on the Characteristic of the Flow Rate at the Journal Bearing with Vertical Type (수직형 저널 베어링의 유량특성에 대한 그루브 형상의 영향)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1664-1670
    • /
    • 2015
  • As journal bearing has a sliding motion between the shaft and bearing with lubricating oil, it produces a hydrodynamic lubrication condition. Journal bearing can receive a large force because it takes a distributed load at the large friction face. As the oil groove or oil hole is made in the journal bearing surface for the journal bearing smoothly working under a hydrodynamic lubrication condition, sufficient lubricating oil is supplied through the clearance of journal bearing. The performance of the journal bearing is changed according to the shapes, sizes and positions of an oil groove. In this paper, the flow rate according to the oil groove shapes (triangle, semicircle and rectangle) among the various oil supply conditions was measured. The shape that discharges the highest flow rate was observed and the groove shape of optimal performance for the journal bearing was determined. The results showed that the flow rate increases with decreasing operating temperature, the influence of temperature on the flow rate decreased with increasing rotational speed, and flow rate in the triangular groove shape was greater than in other shapes.

A study on the topology optimization of structures (구조물의 토폴로지 최적화에 관한 연구)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1241-1249
    • /
    • 1997
  • The problem of structural topology optimization can be relaxed and converted into the optimal density distribution problem. The optimal density distribution must be post-processed to get the real shape of the structure. The extracted shape can then be used for the next process, which is usually shape optmization based on the boundary movement method. In the practical point of view, it is very important to get the optimal density distribution from which the corresponding shape can easily be extracted. Among many other factors, the presence of checker-board patterns is a powerful barrier for the shape extraction job. The nature of checker-board patterns seems to be a numerical locking. In this paper, an efficient algorithm is presented to suppress the checker-board patterns. At each iteration, density is re-distributed after it is updated according to the optimization rule. The algorithm also results in the optimal density distribution whose corresponding shape has smooth boundary. Some examples are presented to show the performance of the density re-distribution algorithm. Checker-board patterns are successfully suppressed and the resulting shapes are considered very satisfactory.

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Optimization of a Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow tines (6시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Eom J. G.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.798-803
    • /
    • 2005
  • In this paper, the six sigma scheme together with the rigid-viscoplastic finite element method is employed to obtain the optimal metal flow lines of a hot forging according to the six sigma processes, i.e., five steps such as define, measure, analyze, improve and control. Each step is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator is used for analysis of the metal flow lines of the hot forging, manufactured by a hot press forging machine, under various conditions of major factors determined at each step. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are then used to find an optimal process and the optimal process with die is devised and tested. The comparison between the required metal flow lines and the experiments shows that the approach is effective for optimal process design in hot forging considering metal flow lines.