• Title/Summary/Keyword: optimal shapes

Search Result 432, Processing Time 0.025 seconds

Decision-making of alternative pylon shapes of a benchmark cable-stayed bridge using seismic risk assessment

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.583-607
    • /
    • 2016
  • One of the main applications of seismic risk assessment is that an specific design could be selected for a bridge from different alternatives by considering damage losses alongside primary construction costs. Therefore, in this paper, the focus is on selecting the shape of pylon, which is a changeable component in the design of a cable-stayed bridge, as a double criterion decision-making problem. Different shapes of pylons include H, A, Y, and diamond shape, and the two criterion are construction costs and probable earthquake losses. In this research, decision-making is performed by using developed seismic risk assessment process as a powerful method. Considering the existing uncertainties in seismic risk assessment process, the combined incremental dynamic analysis (IDA) and uniform design (UD) based fragility assessment method is proposed, in which the UD method is utilized to provide the logical capacity models of the structure, and the IDA method is employed to give the probabilistic seismic demand model of structure. Using the aforementioned models and by defining damage states, the fragility curves of the bridge system are obtained for the different pylon shapes usage. Finally, by combining the fragility curves with damage losses and implementing the proposed cost-loss-benefit (CLB) method, the seismic risk assessment process is developed with financial-comparative approach. Thus, the optimal shape of the pylon can be determined using double criterion decision-making. The final results of decision-making study indicate that the optimal pylon shapes for the studied span of cable-stayed bridge are, respectively, H shape, diamond shape, Y shape, and A shape.

Shape Optimal Design to Minimize Stress Concentration in the Journal of the Heating Drum for a Hot-Rolling Press (열간압연 프레스용 가열드럼 저어널부의 응력집중 최소화를 위한 형상 최적설계)

  • Kim Won-Jin;Lee Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.137-145
    • /
    • 2005
  • The present research deals with structural analysis and optimal design of the heating drum of a hot-rolling press for medium density fiberboard. Stress concentration in the journal of the heating drum is analyzed by the submodel technique of the finite element method. The fatigue life under operating conditions is analyzed and evaluated by the stress-life theory. Shape optimal design problems, to minimize the maximum stress occurring in the journal, are formulated and shape parameters of the corner fillets of the journal are defined as the design variables. The problems are solved by the numerical optimization method and optimal shapes are found. The optimal designs are shown to be reliable in terms of the maximum stress and the fatigue life.

Optimum design of blank shape for press forming (최적 프레스가공을 위한 블랭크형상 설계)

  • Kim, Yeong-Seok;Park, Gi-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1141-1148
    • /
    • 1997
  • In the stamping industry the blank shape to be stamped into a designed shape has been conventionally determined from the try out process by the press engineers. The work needs a lot of time and thus leads a loss of productivity. In this study boundary element method for 2-dimensional potential problem was used to design optimum blank shapes for irregular press forming. Here we assumed that the blank is controlled by blank holder only and material flow at blank holder was under potential flow. The developed PC code for designing the optimum blank shape shows that the blank shapes for optimal drawing can be calculated within a few minute in pentium PC and the calculated shapes agree well with the experiments. However the application of this method is constrained only to the pressed product with flat bottom.

Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates (삼차원 적층복합재 구멍의 형상 최적화)

  • 한석영;마영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.275-280
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study. (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsal-Hill failure index was reduced up to 67% when shape optimization was peformed under the initial volume by volume control of growth-strain method.

  • PDF

Effects of Vaned Diffuser Shapes on the Flowfields of a Small-Size Turbo-Compressor (소형 터보압축기의 디퓨져 형상변화에 따른 유동특성 고찰)

  • Kim, H.-S.;Cha, K.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.187-192
    • /
    • 2000
  • The effects of diffuser shapes on the flowfields of a small-size turbo-compressor have been investigated by numerically and experimentally. It is important to optimal design of each elements for developing the small-size turbo-compressor Typical range of rotating speed of a small-size turbo-compressor is 40,000-70,000rpm. Numerical analyses are conducted to the rectangular and conical shapes of diffusers. Three-dimensional, steady, viscous governing equations are solved by SIMPLE algorithm. To prove the numerical results, experimental studies for the measurements of static pressure and temperature at the inlet and outlet boundaries are performed. Comparisons of these results are executed, and reasonable agreements are acquired.

  • PDF

An Effective Method for the Nesting on Several Irregular Raw Sheets (임의 형상의 여러 원자재 위에서의 효과적인 배치방안)

  • 조경호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1854-1868
    • /
    • 1995
  • An effective nesting algorithm has been proposed to allocate the arbitrary shapes on one or several raw sheets by applying the well-known simulated annealing algorithm as the optimization technique. In this approach, both the shapes to be allocated and the raw sheets are represented as the grid-based models. This algorithm can accommodate every possible situations encountered in cutting apparel parts from the raw leather sheets. In other words, the usage of the internal hole of a shape for other small shapes, handling of the irregular boundaries and the interior defects of the raw sheets, and the simultaneous allocation on more than one raw sheets have been tackled on successfully in this study. Several computational experiments are presented to verify the robustness of the proposed algorithm.

Coupled Heat and Mass Transfer in Absorption of Water Vapor into LiBr-$H_2O$ Solution Flowing on Finned Inclined Surfaces

  • Seo, Taebeom;Cho, Eunjun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1140-1149
    • /
    • 2004
  • The absorption characteristics of water vapor into a LiBr-H$_2$O solution flowing down on finned inclined surfaces are numerically investigated in order to study the absorbing performances of different surface shapes of finned tubes as an absorber element. A three-dimensional numerical model is developed. The momentum, energy, and diffusion equations are solved simultaneously using a finite difference method. In order to obtain the temperature and concentration distributions, the Runge-Kutta and the Successive over relaxation methods are used. The flat, circular, elliptic, and parabolic shapes of the tube surfaces are considered in order to find the optimal surface shapes for absorption. In addition, the effects of the fin intervals and Reynolds numbers are studied. The results show that the absorption mainly happens near the fin tip due to the temperature and concentration gradient, and the absorbing performance of the parabolic surface is better than those of the other surfaces.

A Study on the Optimal Blank Design Using Sensitivity Analysis Method (민감도법에 의한 최적블랭크 형상 설계에 관한 연구)

  • Sim, Hyeon-Bo;Son, Gi-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.79-86
    • /
    • 2000
  • In this study, a method of optimal blank design using the sensitivity analysis has been proposed. To get sensitivity a well-known commercial code PAM-STAMP has been used. In order to verify this method, formings of square cup, clover shaped cup and L shaped cup have been chosen as the examples. With the predicted optimal blank both computer simulation and experiment are performed. Excellent agreements are recognized between the numerical results and the target contour shapes. Through the investigation, the proposed systematic method of optimal blank design is found to be effective in the design of the deep drawing process.

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

Experimental Analysis on the Resonator in the Rotary Compressor (회전압축기 공명기에 관한 실험적 연구)

  • Lee, Byung-Chan;Kim, Jin-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1410-1415
    • /
    • 2000
  • This paper introduces the experimental analysis of the resonator in the rolling piston type compressor for air conditioner. The resonator located between cylinder and bearing is a major factor in the noise reduction of the rotary compressor. Several shapes for the resonator which can be built in the space limitations are derived. Then optimal resonator type for the noise reduction is determined by noise tests. 6 design parameters of the type are found and optimal level for each design factor is deduced from Taguchi method.

  • PDF