• Title/Summary/Keyword: optimal shapes

Search Result 432, Processing Time 0.021 seconds

Verification of Sensitivity Method for the Design of Optimal Blanks of General Shaped Parts (일반적인 형상의 스탬핑의 최적블랭크 설계를 통한 민감도법의 검증)

  • 손기찬;심현보;황현태
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The sensitivity method has been utilized to find initial blank shapes which transform into desired shapes after forming. From the information of die shapes, target shape and material properties, the corresponding initial blank which gives final shape after deformation has been found. Drawings of a trapezoidal cup, a cross-shaped cup and an oil pan have been chosen as the examples. At every case the optimal blank shape has been obtained only a few times of modification without any predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are recognized between simulation and experiment at every cases Through the investigation, the sensitivity method is found to be effective in obtaining optimal blank shapes in drawing of complex shapes.

  • PDF

Static Optimal Shapes of Tapered Beams with Constant Volume (일정체적 변단면 보의 정적 최적 단면)

  • Lee Tae-Eun;Kang Hee-Jong;Kim Kwon-Sik;Lee Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.79-86
    • /
    • 2005
  • This paper deals with the static optimal shapes of simple beams which are subjected to a vertical point load. The area and second moment of inertia of the regular polygon cross-section of the tapered beams are determined, which have always same volume and same length for the parabolic taper. The differential equation governing the elastic curve is derived using the small deflection theory and solved numerically. By using the numerical results of deflections, rotations and bending stresses of such beams, the optimal shapes, namely, optimal section ratios, of the beams subjected to a single point load according to variation of load position parameters are determined and presented in the figures. Examples of the static optimal shapes for beams with a single load and multiple loads are reported. The design process of this study can be used directly for the minimum weight design of simple beams.

  • PDF

Shape Optimization of Cutouts in a Laminated Composite Plate Using Volume Control (체적제어에 의한 적층 복합재 구멍의 형상 최적화)

  • Han, Seog-Young;Ma, Young-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1337-1343
    • /
    • 2004
  • Shape optimization was performed to obtain a precise shape of cutouts including the internal shape of cutouts in a laminated composite plate by three dimensional modeling using solid element. Volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. It makes Tsai-Hill failure index at each element uniform in laminated composites under the predetermined volume a designer requires. Shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study; (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure indices of the optimal shapes were remarkably reduced comparing with those of the initial shapes.

Static Optimal Shapes of Tapered Beams with Constant Volume (일정체적 변단면 보의 정적 최적단면)

  • 이병구;이태은;최규문;김영일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.115-122
    • /
    • 2002
  • The main purpose of this paper is to determine the static optimal shapes of tapered beams with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The Runge-Kutta method is used to integrate the differential equation and also Shooting method is used to calculate the unknown boundary condition. Then the static optimal shapes are determined by reading the minimum values of the deflection versus section ratio curves plotted by the deflection data. In numerical examples, the various tapered beams are analyzed and those numerical results of this study are shown in figures.

  • PDF

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

Method of Shape Error Measurement for the Optimal Blank Design of Shapes with 3D Contour Lines (목표윤곽선이 3 차원 곡선인 형상의 최적블랭크 설계를 위한 형상오차 측정법)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • After a short review of the iterative optimal blank method, a new method of measuring the shape error for stamped parts with 3D contour lines, which is an essential component of the optimal blank design, is proposed. When the contour line of the target shape does not exist in a plane, but exists in 3D space, especially when the shape of the target contour line is very complicated as in the real automotive parts, then the measurement of the shape error is critical. In the current study, a method of shape error measurement based on the minimum distance is suggested as an evolution of the radius vector method. With the proposed method, the optimal blank shapes of real automotive parts were found and compared to the results of the radius vector method. From the current investigation the new method is found to resolve the issues with the radius vector method.

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.

Optimal Design of the Punch Shape for a Housing Lower (펀치 형상에 따른 Housing Lower 최적 공정 설계)

  • Park, S.J.;Park, M.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.332-339
    • /
    • 2015
  • In the current paper, a cold forging sequence was developed to manufacture a precisely cold forged H/Lower, which is used as the air back unit in commercial automobiles. The preform shape of the H/Lower influences the dimensional accuracy and stiffness of the final product. The shape factor (SF) ratio and shape of the tools are considered as the design parameters to achieve adequate backward extrusion height and maintain appropriate thickness variations. The optimal conditions of the design parameters were determined by using an artificial neural network (ANN). To experimentally verify the optimal preform and tool shapes, the experiments of the backward extrusion of the H/Lower were executed. The process design methodology proposed in the current paper, can provide a more systematic and economically feasible means for designing the preform and tool shapes for cold forging.

Application of Genetic Algorithm to Die Shape Otimization in Extrusion (압출공정중 금형 형상 최적화문제에 대한 유전 알고리즘의 적용)

  • 정제숙;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.269-280
    • /
    • 1996
  • A new approach to die shape optimal design in extrusion is presented. The approach consists of a FEM analysis model to predict the value of the objective function a design model to relate the die profile with the design variables and a genetic algorithm based optimaization procedure. The approach was described in detail with emphasis on our modified micro genetic algorithm. Comparison with theoretical solutions was made to examine the validity of the predicted optimal die shapes. The approach was then applied to revealing the optimal die shapes with regard to various objective functions including those for which the design sensitivities can not be deter-mined analytically.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF