• Title/Summary/Keyword: optimal plastic design

Search Result 201, Processing Time 0.026 seconds

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Convergence Study of Motorsports and Technology : Strength Analysis for the Design of CFRP Bucket Seat (모터스포츠와 기술 융합 연구 : CFRP 버킷 시트 설계를 위한 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.165-171
    • /
    • 2019
  • Engineering and Technology have been influencing a lot in the field of sports. Competitiveness, attributes of sports, have forced not only sports players but sports goods to enhance those performance. Particularly in the field of motorsports, the convergence of sports and technology has long been done to satisfy between performance and safety. In this study, strength analysis was carried with FEM to develop CFRP Laminate(Carbon Fiber Reinforced Plastic Laminate) bucket seat targeted to motorsports and car tuning industries and FIA($F\acute{e}d\acute{e}ration$ Internationale de l'Automobile) regulation was applied to design the racing seat and evaluate its strength. FEM modeling considered the attributes of composites was followed by strength evaluation based on Tsai-Wu failure index were done according to Lay-up sequence and layer numbers. The result showed that the lay-up sequence with stacking angle such as $[0^{\circ}/30^{\circ}/60^{\circ}/90^{\circ}/-30^{\circ}/-60^{\circ}]_4$ with 3mm form core was optimal selection in the field of weight and strength evaluation.

Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine (소형 가스터빈용 터빈 디스크의 형단조 공정 연구)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

A Study on the Thermal Stresses Analysis of the Flat Mould (평평한 금형(金型)의 열응력(熱應力)에 관한 연구(硏究))

  • Min, Soo-Hong;Koo, Bon-Kwon;Kim, Ok-Sam
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.245-253
    • /
    • 1991
  • It is known that the analysis of thermal stresses is substantially important in optimal design of casting mould. In this paper unsteady state thermal stresses generated in ingot and mould during the solidification process are analyzed by the two dimensional thermal elasto-plastic analysis. Distribution of temperature and stress of the mould is calculated using the finite element method and compared with experimental result. The significant results obtained in this study are as follows. At the early stage of the casting process, abrupt temperature change was shown in the vicinity of the inner surface of the mould. The largest temperature gradient is occurred at the corner of the mould. In the thermal stress analysis, compressible stress occurred in the inside wall of the mould where as tensile stress on outside wall. Smaller thermal stress is observed at the rounded corner. It is also observed that the shown is influenced by the thickness of the wall. A fairly good coincidence is found between analytical and experimental results, showing that the proposed analytical methodology is reliable.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

An Optimal Design of the Rocket Nozzle Wall by the Numerical Method (수치해법에 의한 로켓 노즐벽의 최적설계)

  • Jin Won Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1986
  • It is the aims of this study to choose the materials and determine the material thickness of laminated Rocket Nozzle Wall operating at high pressure and high temperature. The heat conduction analysis of each layer was performed by Crank Nicolson method changing the thickness and the materials for the imput data of Tungsten, Graphite, Alumina, Aluminum, Molybdenum, Plastic laminate. The results of the study for pressure of 93.5kg/$cm^2$ and temperature of $3000^{circ}C$ in the nozzle dia of 40cm are as follows.

  • PDF

The Development of Life Prediction Method for Hot Forming Dies (열간단조용 금형형의 수명예측기법 개발)

  • 이진호;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.54-59
    • /
    • 1998
  • In this study, two kinds of life prediction method for hot forming die are developed . One is empirical method requiring some experiment that evaluate thermal softening of die material accoring to operating conditions. The other is analyticl method that calcuate wear quantity of die occuring during the forming process. Wear is a predominant factor as well as plastic deformation and heat checking . And, these methods are applied to prodict tool life real die producting part for automobile. Thus , the applicability and the accuracy of the presented methods are investigated. Using the verified life prediction method above , optimal blocker die design minimizing the finisher die is done.

  • PDF

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

Optimization of Injection Molding to Minimize Sink Marks for Cylindrical Geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.111-115
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

Numerical Simulation of Structural Response in Bow Collision (1st Report) (선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보))

  • 박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF