• Title/Summary/Keyword: optimal placement

Search Result 368, Processing Time 0.028 seconds

Clinical Evaluation of Simultaneous Implants Placement Following Augmentation of the Maxillary Sinus with Deproteinized Bovine Bone (탈단백 우골을 이용한 상악동 거상술 후 즉시 임플란트 식립에 대한 임상적 평가)

  • Kim, Hyun-Kuk;Kim, Jin-Wook;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • Purpose: Placement of endosseous implants in the atrophic maxilla is often restricted because of the lack of supporting bone. In this article, augmentation of the maxillary sinus floor with deproteinized bovine bone to enable insertion of endosseous implants is described. The technique is aimed at providing a cortical layer on top of the graft to ensure a reliable seal of the maxillary sinus and to achieve optimal stability of the bone graft in case of simultaneously placement of dental implants. Methods: The procedure was used in 200 patients (839 implants), using deproteinized bovine bone. The mean follow-up was 28.5 months. No inflammation of the bone grafts nor of the maxillary sinus occurred. The patients received implant supported overdentures or bone-anchored bridges. Results: The survival rate of implant restoration of this study was 97.6%. The total average of marginal bone loss in radiographs was $0.20{\pm}0.38$ mm. Insufficient primary stability, bony quality, and infection were thought to be associated factors in the failed cases. Conclusion: This study documented that deproteinized bovine bone, when used as a grafting material for augmentation of the sinus floor, may lead to proper osseointegration of a endosseous implant.

Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task (얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법)

  • Jang, Min Woo;Kim, Jae Myung;Jang, Wan Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.

Mobile Base Station Placement with BIRCH Clustering Algorithm for HAP Network (HAP 네트워크에서 BIRCH 클러스터링 알고리즘을 이용한 이동 기지국의 배치)

  • Chae, Jun-Byung;Song, Ha-Yoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.761-765
    • /
    • 2009
  • This research aims an optimal placement of Mobile Base Station (MBS) under HAP based network configurations with the restrictions of HAP capabilities. With clustering algorithm based on BIRCH, mobile ground nodes are clustered and the centroid of the clusters will be the location of MBS. The hierarchical structure of BIRCH enables mobile node management by CF tree and the restrictions of maximum nodes per MBS and maximum radio coverage are accomplished by splitting and merging clusters. Mobility models based on Jeju island are used for simulations and such restrictions are met with proper placement of MBS.

Effect of Electromagnetic Navigated Ventriculoperitoneal Shunt Placement on Failure Rates

  • Jung, Nayoung;Kim, Dongwon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.150-154
    • /
    • 2013
  • Objective : To evaluate the effect of electromagnetic (EM) navigation system on ventriculoperitoneal (VP) shunt failure rate through comparing the result of standard shunt placement. Methods : All patients undergoing VP shunt from October 2007 to September 2010 were included in this retrospective study. The first group received shunt surgery using EM navigation. The second group had catheters inserted using manual method with anatomical landmark. The relationship between proximal catheter position and shunt revision rate was evaluated using postoperative computed tomography by a 3-point scale. 1) Grade I; optimal position free-floating in cerebrospinal fluid, 2) Grade II; touching choroid or ventricular wall, 3) Grade III; tip within parenchyma. Results : A total of 72 patients were participated, 27 with EM navigated shunts and 45 with standard shunts. Grade I was found in 25 patients from group 1 and 32 patients from group 2. Only 2 patients without use of navigation belonged to grade III. Proximal obstruction took place 7% in grade I, 15% in grade II and 100% in grade III. Shunt revision occurred in 11% of group 1 and 31% of group 2. Compared in terms of proximal catheter position, there was growing trend of revision rate according to increase of grade on each group. Although infection rate was similar between both groups, the result had no statistical meaning (p=0.905, chi-square test). Conclusion : The use of EM navigation in routine shunt surgery can eliminate poor shunt placement resulting in a dramatic reduction in failure rates.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.

Simultaneous Hard Tissue and Soft Tissue Graft with Dental Implant Placement and Provisionalization: A Case Report

  • Hyunjae Kim;Young-Dan Cho;Sungtae Kim
    • Journal of Korean Dental Science
    • /
    • v.17 no.2
    • /
    • pp.84-91
    • /
    • 2024
  • Achieving both esthetic and functional implant rehabilitation is crucial for the successful treatment of the anterior maxilla. Adequate peri-implant alveolar bone and soft tissue are essential for optimal rehabilitation of the esthetic area, and there is a direct association between the implant position and prosthetic outcomes. Immediate provisionalization may also be advantageous when combined with augmentation. This case report described the implant placement in a 25-year-old female patient who had lost her right maxillary lateral incisor (#12) due to trauma-induced avulsion. The treatment involved simultaneous grafting and collagenated, deproteinized bovine bone mineral, along with subepithelial connective tissue taken from the right maxillary tuberosity. A polyetheretherketone abutment and non-functional immediate provisionalization were performed by removing both the proximal and occlusal contacts on the composite resin crown. Clinical and radiographic evaluations revealed maintenance of stable ridge contour aspects for six months following surgical treatment. In summary, implant rehabilitation in the esthetic zone can be successful using simultaneous soft and hard tissue grafts. Moreover, soft tissue stabilization post-subepithelial connective tissue grafting can be achieved through early or immediate visualization, along with immediate implant placement.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Delayed Occurrence of Maxillary Sinusitis after Simultaneous Maxillary Sinus Augmentation and Implant: A Case Report and Literature Review (상악동 거상술을 동반한 임플란트 식립 후 지연성으로 발생한 상악동염에 대한 고찰)

  • Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • The maxillary floor sinus augmentation is considered as a safe and predictable procedure to ensure optimal implant placement. However, this procedure may have a variety of intra-surgical or post-surgical complications, also the major drawback of the procedure is deemed maxillary sinusitis. This case is a very unusual delayed occurrence of acute maxillary sinusitis after simultaneous maxillary sinus augmentation, using xenograft and implant placement. This report describes a serious complication of the maxillary sinus augmentation.

Network Optimization in the Inhomogeneous Distribution Using Genetic Algorithm Traffic (유전자 알고리즘을 이용한 비균일 트래픽 환경에서의 셀 최적화 알고리즘)

  • 박병성;한진규;최용석;조민경;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2B
    • /
    • pp.137-144
    • /
    • 2002
  • In this paper, we optimize the base station placement and transmission power using genetic approach. A new representation describing base station placement and transmit power with real number is proposed, and new genetic operators are introduced. This new representation can describe the locations, powers, and number of base stations, Considering coverage, power and economy efficiency, we also suggest a weighted objective function. Our algorithm is applied to an obvious optimization problem, and then it is verified. Moreover, our approach is tried in inhomogeneous traffic distribution. Simulation result proves that the algorithm enables to fad near optimal solution according to the weighted objective function.