• Title/Summary/Keyword: optimal operation planning

Search Result 199, Processing Time 0.022 seconds

On the Optimal time for Renewal of Facilities (설비교체의 최적시기 결정에 관하여)

  • Choi, Eun-Chae
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.109-114
    • /
    • 1977
  • There are some factors which cause the profits from the production to be decreased or increased. They are, for example, the rise in efficiency of production facilities resulting from the development of the scientific technique, the changes of purchase price of those, and the drop in efficiency of those owing to there long-term operation. In this connection, an manager can get the highest profit by deciding the proper time of new facilities replacement for those in operation or in being planned, which leads to good management planning of his manufactaring business for a given period or a long time. Main purpose of this is the study of how we decide the optimal time or facilities replacement in order to maximize the total profits for a given period by considering them as continous function as to the time in the case where a machineng is set. The results are following: 1. The definition of profit function is in duced in consideration of the breakdowns caused from continous operation of the machinery. 2. The necessary conditions are obtained for the optimal time of replacement and find out the methods of its solution. 3. Comparing between the 'Short cut' method and method in this paper, we obtained that our method is more realistic.

  • PDF

Transporter Operation Planning for Refrigerated Warehouse Using Simulation Method (냉장물류센터 내 운반장비 운영계획에 관한 연구)

  • Hwang, Heung-Suk;Kim, Ho-Gyun;Cho, Gyu-Sung
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.382-390
    • /
    • 2002
  • This paper deals with planning of order-picking warehouse considering the batch order picking for transportation equipments to pick consumers' orders at a time among order-picking methods and a systematic approach method in order to analyze the order-picking warehouse which can perform optimal operation. To estimate an operating time of transportation equipments to carry out order-picking, this paper suggests three operations : first, to design the refrigerated warehouse using warehouse design parameters, second, to calculate the travel time of transporters considering four types of times with the probabilistic picking frequency, and third, to analyze an order-picking warehouse to construct a simulation model with the AutoMod as a simulation tool. We apply this model to a refrigerated warehouse company in Busan.

Development of Optimization Model for Long-term Operation Planning of the Hydropower Reservoirs in Han River Basin (한강수계 발전용댐 장기 운영계획 수립을 위한 최적화 모형 구축)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.69-79
    • /
    • 2019
  • In Korea, more than 60% of the whole lands are mountainous area. Since many decades ago, hydroelectric power plants have been constructed and eco-friendly energy has been produced. Hydropower can cope with the rapidly changing energy supply and demand, and produce eco-friendly energy. However, when the reservoir is built, it is often inevitable to damage the environment due to construction of large structure. In this study, the optimal reservoir operation model was developed to maximize power generation by monthly operation for long-term operation planning. The dam operation model was developed using the linear programming which is widely used in the optimal resources allocation problems. And the reservoir operation model can establish monthly operation plan for 1 year. Linear programming requires both object function and constraints to be linear. However, since the power generation equation is nonlinear, it is linearized using the Taylor Expansion technique. The optimization results were compared with the 2009-2018 historical data of five hydropower reservoirs. As a result, the total optimal generation is about 10~37% higher than the historical generation.

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

A Study on the Optimal Weakly Operation Planning of Pumped Hydrostorage Plant (함수발전기의 주간운용계열에 관한 연구)

  • 송길영;김영태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.5
    • /
    • pp.193-200
    • /
    • 1985
  • Increased attention has been given in recent years to the use of pumped hydrostorage plant to meet the requirements for peak generation and bottom pumping. Once a pumped hydrostorage plant is installed, its economic operation as an integral component of a steam generating system requires the selection of a pumping and generating schedule which will result in the most effective use of the hydro generating capacity. The general object of coordination of pumped hydrostorage plants with electric power system is the minimization of the overall procduction cost and the maximization of generation reserves. This paper presents a method for the optimal scheduling of pumped hydrostorage plant and a computer program which determines weekly operating schedules for a pumped hydrostorage plant by dynamic programming method.

  • PDF

The optimal power flow algorithm considering load power factor limits (부하역률 제약을 고려한 최적 급전 알고리즘)

  • Kim, Kwang-Wook;Cho, Jong-Man;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.98-100
    • /
    • 2003
  • This paper presents the method for computing the power economic dispatch with an optimal power flow (OPF) computation algorithm, considering the power factor limits constraint. Efficient reactive power planning enhances economic operation as well as system security. Accordingly, an adequate level of power factor limits for the load buses should be evaluated for economic operation. The power factor limits are included and described into the OPF's objective function. The proposed method is applied to IEEE 26 buses system.

  • PDF

Assessment of the optimal basic reliability in distribution system using genetic algorithm (배전계통 최적기본신뢰도 지수 평가를 위한 유전자 알고리즘의 적용)

  • Kim, Jae-Chul;Han, Seong-Ho;Lee, Bo-Ho;Rhee, Wook;Jang, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.64-66
    • /
    • 1995
  • This paper presents a new approach to evaluate optimal basic reliability indices of electric distribution systems using genetic algorithm. The use of optimal reliability evaluation is an important aspect of distribution system planning and operation to determine adequacy reliability level of each area. In this paper, the reliability model is based on the analytical method, connecting component failure to load point outage in each section. The proposed method applies genetic algorithm to calculate the optimal values of basic reliability indices, ie. failure rate and repair time, for a load point in the power distribution system, subject to minimizing interruption cost. Test results for the model system are reported in the paper compared with a direct optimization method(gradient projection).

  • PDF

A Study on Contingency Constrained Optimal Power Flow Algorithm (상정사고를 고려한 최적조류계산 알고리즘에 관한 연구)

  • Joung, Sang-Houn;Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.123-127
    • /
    • 2006
  • The recent movement to deregulated and competitive electricity market requires new concepts in applying dispatch algorithms to system operation and planning. As power systems tend to be operated more closely to their ultimate ratings, the role of Contingency Constrained Optimal Power Flow is changed and the importance for security enhancement will be more increased in the new and competitive electricity market. This paper presents a contingency constrained optimal power flow (CCOPF) algorithm. The proposed algorithm maintains the nodal voltage levels and transmission line's power flow within the specified limits before and after a contingency. A case study demonstrates the proposed algorithm with the IEEE-14RTS under N-1 contingency criterion.

Development of Exposure Level Prediction Program in Radioactive Waste Work (방사성 폐기물 작업 중의 피폭서량 예측 프로그램 개발)

  • Park, Won-Man;Kim, Yoon-Hyuk;Whang, Joo-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • In spite of the importance of nuclear power as one of major electric energies in Korea, the nuclear safety has become the most serious social issue in the operation of the nuclear power plant. In this paper, a virtual work simulation program was developed to predict exposure dose during radiation work in radwaste storage. The work simulation program was developed. using $Java ^{TM}$applet and VRML-virtual reality modeling language. A numerical algorithm to find the optimal work path which minimize exposure dose during the given work, was developed and exposure dose on the optimal work path was compared with that on the shortest path. Comparing with the shortest path for the given work, the predicted optimal path consumed longer work time by II% but reduced total exposure dose by 46%. The simulation result showed that the exposure dose depended on not only work time, but also the distance between the worker and the radiation source. The developed simulation program could be a useful tool for the planning of radioactive waste work to increase the radiation safety of workers.

Line Planning Optimization Model for Intercity Railway (지역간 철도의 노선계획 최적화 모형)

  • Oh, Dongkyu;Kho, Seung-Young;Kang, Seungmo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.80-89
    • /
    • 2013
  • The purpose of this research is to optimize the line planning of the intercity passenger railway. In this study, the line planning problem has been formulated into a mixed integer programming by minimizing both user costs (passenger's total travel time) and operator costs (operation, maintenance and vehicle costs) with multiple train types. As a solution algorithm, the branch-and-bound method is used to solve this problem. The change of travel demand, train speed and the number of schedules have been tested through sensitivity analysis. The optimal stop-schedules and frequency as well as system split with respect to each train type have been found in the case study of Kyoung-bu railway line in Korea. The model and results of this research are useful to make a decision for railway operation strategy, to analyze the efficiency of new railway systems and to evaluate the social costs of users and operators.