• Title/Summary/Keyword: optimal mixture ratio

Search Result 255, Processing Time 0.024 seconds

In Case of Treatment of PEC4 Hydroseeding Measures for Revegetation of Rock Cut-Slopes (암비탈면 녹화용 환경친화적 PEC4 공법의 시공)

  • Kim, Kyung-Hoon;Kim, Hak-Young;Hwang, Ae-Min;Lee, Seung-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.64-73
    • /
    • 1999
  • This study was conducted to find out the effects of hydroseeding material and seed mixture on the revegetation of rock cut-slopes by PEC4 (Polymer-Ecology-Control) Hydroseeding Measures. PEC4 hydroseeding material was applied to four cut-slopes using hydroseeding measures from April to August, 1999, and the field survey was carried out by monthly. PEC4 material consisted of bark compost and organic soil amendments. This material has high content of organic matter and high level of water holding capacity. PEC4 hydroseeding material shows low level of soil hardness, so it gives to good condition for seed germinating and plant growing in early stage. PEC4 material attached at rock cut-slopes by two types of adhesive agent was not eroded by rainfall. The plant coverage and number of plant species were affected by mixing ratio of seeds and seeding timing. From the viewpoint of plant establishment, the optimal hydroseeding timing of mixed seeds for plant growth seems to be in May. Most of the plant seeds were germinated well and they covered rock cut-slopes so quickly and effectively. Plant importance value of Silene armeria and Platycodon grandiflorum. were higher than any other seeded-native species in the competition between native species and exotic species, so they have enough possibility to be used for slope revegetation works. Thus it leads to conclusion that the revegetation method used in this experiment was a very effective method for plant establishment on rock cut-slopes.

  • PDF

Storage Quality of Minimally Processed Onions as Affected by Seal-Packaging Methods (포장방법에 따른 신선 편의가공 양파의 저장품질 변화)

  • Hong, Seok-In;Son, Seok-Min;Chung, Myong-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1110-1116
    • /
    • 2003
  • The effects of packaging methods on the storage quality of minimally processed (prepeeled) onions were investigated to determine the optimal packing design. Various packaging treatments used for modifying headspace atmospheres included two passive MAP using LDPE and PP films, two active MAP using a gas mixture of 20% $O_2/10%\;CO_2/balance\;N_2$ and an ethylene scavenging sachet, and moderate vacuum packaging (MVP). The quality attributes of onion samples were evaluated periodically in terms of flesh weight loss, color of cut surface, decay ratio, microbial counts, and sensory properties during storage at $10^{\circ}C$ for 28 days. Packaging methods did not significantly influence surface color, weight loss, and microbiological populations of mesophiles, psychrotrophs, and lactic acid bacteria. They did, however, affect sensory characteristics as well as decay occurrence. Results indicated that seal-packaging with a gas-permeable plastic film under a mild vacuum condition could retain better onion quality in terms of microbial decay and visual sensory aspects as compared with the other packages.

Quality Characteristics of Cookies with Persimmon Peel Powder (감과피 분말을 첨가한 쿠키의 품질특성)

  • Lim, Hyun-Sook;Cha, Gyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.30 no.5
    • /
    • pp.620-630
    • /
    • 2014
  • Traditionally, the persimmon Gojongsi (Diospyros kaki Thunb) is peeled to make dried persimmons and the skins are thrown away. In this study, the quality characteristics of cookies containing persimmon peel powder were tested for recycling of the persimmon peels. The amounts of persimmon peel powder added to the cookies were about 0, 5, 7, 9 and 11%. The densities of the cookies of the control group and the persimmon peel powder containing experimental group were 1.25 and 1.25~1.37 respectively. The pH was 6.02 for the control group and 5.95~6.01 for the experimental group. Significant differences in the moisture content were observed between groups at 3.34 and 2.16~3.31 for the control and experimental groups, respectively (p<0.05). The spreadabilities and loss rates of the cookies increased with increasing amounts of persimmon peel powder (p<0.05). In contrast, the loss rates and leavening rate of the cookies decreased significantly with decreasing amounts of persimmon peel powder (p<0.05). The lightness of the cookies showed significant decrease (p<0.05), while the redness and yellowness increased with increasing amounts of persimmon peel powder. The hardness (kg) of the control group was 0.847 while that of the experimental group was 0.904~1.110. In the QDA, the results of sensory characteristic analysis showed that the experimental group earned 11% higher scores for color, flavor, taste, and bitterness, 7% higher for appearance and 9% higher for after taste. The consumer acceptance test revealed the experimental group to have a 7% more positive evaluation for color, favor, taste and texture than the control group. On the grounds of the experiment above, the optimal mixture ratio from the sensory test was found to be 7% persimmon peel powder in the cookies.

The Manufacturing Process and Characteristic Analysis of BKNO3 Metal-Explosive for PMD (PMD용 BKNO3 금속화약의 제조공정 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This study investigated the manufacturing process and characteristics of $BKNO_3$ (Boron Potassium Nitrate) as a pyrotechnic propellant that is commonly used in the aerospace, defense, and automobile industries. The solid mixture was composed of oxidizing agent, fuel, and binder. Evaporation process was used to uniformly mix the raw materials. The optimal ratio of composition was designed through the CEA program analysis of the material characteristics and thermal responses. Further the size, shape, sensitivity, and calorimetry characteristics were studied.

Assessment of Hydraulic Conductivity of Modified Bentonite and Local Soil Mixture under Salt Water Condition (개량 벤토나이트와 현장토 혼합 차수층의 염수조건하에서의 투수성 평가)

  • Xu, Xin;Oh, Myounghak;Park, Junboum
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.97-104
    • /
    • 2017
  • A bentonite mixing with local soil widely used as liner layer for landfill should have low permeability less than $1{\times}10^{-7}cm/s$. But there are several limitations of bentonite used as liner layer, such as drying shrinkage cracking, ineffective waterproof ability under salt water condition like flocculation under sea water. The purpose of this research is the development of a salt resistance bentonite by mixing sepiolite and guar gum to overcome the weak points of bentonite to get high water resistance capacity and permeability coefficient below $1{\times}10^{-7}cm/s$ under salt water condition. After having performed drying shrinkage cracking test, swelling index test, compaction test, and hydraulic conductivity test we confirmed the optimal mixing ratio of materials and evaluated the performance of materials.

Optimal culture conditions for mass production of rock polypody (Polypodium vulgare L.)

  • Jang, Bo Kook;Park, Kyungtae;Han, Ahreum;Lee, Cheol Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.44-44
    • /
    • 2019
  • This study aimed to develop a suitable method for inducing the proliferation of prothallus and producing sporophytes of rock polypody (Polypodium vulgare L.). The prothalli used in all experiments were obtained from spore germination and sub-cultured for 8-week intervals. The most appropriate media for prothallus propagation were investigated by culturing 300 mg of prothallus in MS ($1/4{\times}$, $1/2{\times}$, $1{\times}$, and $2{\times}$ strength) medium and in Knop medium for 8 weeks. Cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $30{\pm}1.0{\mu}mol-m-2{\cdot}s-1$, and a photoperiod of 16/8 h (light/dark). Fresh weight of prothalli was 4.8 g on $1{\times}$ MS, 4.5 g on $1/2{\times}$ MS and 4.3 g on 1/4 MS medium. To select a suitable soil combination for sporophyte formation, 1.0 g of prothallus was ground with distilled water, spread in five combinations onto different soil substrates (decomposed granite, horticultural substrates, peat moss, and perlite), and then cultivated for 13 weeks. The sporophyte cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $43{\pm}2.0{\mu}mol-m-2{\cdot}s-1$, humidity of $84{\pm}1.4%$, and a photoperiod of 16/8 h (light/dark). The results showed that a mixture containing a 2:1 (v:v) ratio of horticultural substrate and perlite, increased sporophyte formation to 462.5 sporophytes per pot (7.5 cm2). The other soil substrates produced from 314.5 to 405.3 sporophytes per pot. Therefore, our results will provide conditions suitable for mass production of Polypodium vulgare L.

  • PDF

Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT (폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • The purpose of this study was to develop self-heating concrete by utilizing the conduction resistance of concrete in order to reduce the risk of occurrence of black ice in the concrete pavement in winter and to prevent damage caused by freez-thawing effect. For this purpose, it was attempted to evaluate the strength and temperature exothermic characteristics using powder and liquid waste CNTs and a waste cathode agent as a conduction promotion. It was analyzed that liquid waste CNT had an effective dispersion degree in the mortar and a small decrease in strength occurred. In addition, DC 24 V was supplied by applying steel mesh, copper foil and copper wire to the mortar as electrodes, and the temperature change characteristics according to the mixing ratio of spent CNTs, anodes and carbon fibers were evaluated. In addition, by evaluating the temperature characteristics according to the electrode spacing from the selected optimal mixture, it was confirmed that it had sufficient heating characteristics up to an electrode spacing of 100 mm up to AC 50 V.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

Improvement of Nitrogen Oxide Removal of Concrete Sidewalk Block Using by Conductive Photocatalyst (전도성 광촉매를 이용한 콘크리트 블록의 대기중 질소산화물 저감에 관한 연구)

  • Geun-Guk Bae;In-Sook Cho;Yong-Sik Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.493-500
    • /
    • 2023
  • The use of TiO2 photocatalyst in the production of concrete blocks for the purpose of nitrogen oxide reduction is an issue of controversy due to the conflicting evidence on its effectiveness. Efforts have been made to reduce the level of nitrogen oxides in the environment by using of titanium dioxide (TiO2). This study examined the effect of incorporating activated carbon into concrete blocks on the reduction of nitrogen oxides released into the atmosphere and the durability of the blocks. The efficiency of photocatalyst was enhanced through the addition of a surrounding conductive substance. The addition of activated carbon resulted in a significant increase in the electrical conductivity of photocatalytic blocks and improved durability. The cement mixture using 5 % TiO2 and 15 % activated carbon exhibited the optimal mixing ratio for the purpose of nitrogen oxide removal. The effect of the addition of conductive carbon to the photocatalytic blocks was discussed with the results of conductivity, flexural and comprssive strength and nitrogen oxide removal test. The relationship between the addition of conductive carbon to the photocatalytic blocks and its resulting effects have been studied by several tests, including conductivity, flexural and compressive strength, and nitrogen oxide removal.

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.