• 제목/요약/키워드: optimal learning

검색결과 1,242건 처리시간 0.036초

인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토 (Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training)

  • 나종호;신휴성;이재강;윤일동
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.99-107
    • /
    • 2023
  • 최근 건설 현장의 안전사고 비율은 전체 산업에서 가장 높은 비중을 차지한다. 인공지능 기술을 건설 현장에 접목하기 위해서는 기초 학습 자료로 활용될 수 있는 데이터셋 확보가 필수적이다. 본 논문에서는 실제 현장 확보를 통해 원천 데이터를 수집하였으며, 토목 현장에서 주로 운용되고 있는 주요 건설장비 객체를 선정하고 약 9만장의 정지영상 데이터셋 가공을 통해 최적의 학습 데이터셋 구축을 완료하였다. 또한, 객체 인식분야의 대표적인 모델인 YOLO를 활용하여 구축된 데이터의 검증 작업을 수행하였고 90 % 근접한 검출 성능을 확인해 데이터 신뢰성을 확보하였다. 본 연구에서 사용되는 학습 데이터셋은 공공데이터포털에서 활용 가능하도록 공개를 완료하였다. 본 데이터셋은 향후 건설안전 분야의 객체 인식 기술의 건설현장 적용을 위한 기반 데이터로 활용 가능하리라 판단된다.

시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향 (Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.

피해규모를 고려한 용수공급시스템 누수복구 우선순위 선정 (Determination of a priority for leakage restoration considering the scale of damage in for water distribution systems)

  • 김률;권희근;최영환
    • 한국수자원학회논문집
    • /
    • 제56권10호
    • /
    • pp.679-690
    • /
    • 2023
  • 누수는 용수공급시스템 내에서 발생할 수 있는 대표적인 비정상상황 중 하나이다. 누수는 관로가 매설된 이후부터 잠재적으로 발생할 수 있으며 발생 직후부터 즉시 경제적 및 수리학적 피해를 입을 수 있기 때문에 이를 적시에 감지하고 탐지하는 것이 중요하다. 하지만 시스템이 지하에 매설되어 있어 이를 빠르게 인지하는 것은 쉽지 않으며 인지한다 하여도 복구하기 위해서는 상대적으로 많은 가용자산이 요구된다. 따라서 다중 누수가 발생할 시 누수규모 및 위치에 따라 복구 우선순위에 대한 우선순위를 선정해야 할 필요성이 있으며 최적의 복구전략이 도출되어 이를 수행할 시 시스템의 탄력성 측면에 있어 유리함을 가질 수 있다. 본 연구에서는 프로그램 기반 모의 누수를 발생시켜 비정상상황 시나리오를 구축하였으며 이에 따라 딥러닝 기반 모델로 누수탐사를 수행하였다. 탐사 결과로 얻어지는 누수위치와 누수량은 이 후 누수복구 우선순위를 위한 요소로써 활용되며 타 요소와 함께 최적의 누수복구 시나리오를 도출하였다.

LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석 (Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image)

  • 심승보
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR는 자율 주행뿐만 아니라 다양한 산업 현장에 적용되어 대상의 크기와 거리를 측정하는 데 사용되고 있다. 이에 더하여 이 센서는 반사된 빛의 양을 바탕으로 반사 강도 영상 또한 제공한다. 이는 측정 대상의 형상에 대한 정보를 제공하여 센서 데이터 처리에 긍정적인 효과를 일으킨다. LiDAR는 고해상도가 될수록 높은 성능을 보장하지만 이는 센서 비용의 증가를 야기하는데, 이 점은 반사 강도 영상에도 해당된다. 높은 해상도의 반사 강도 영상을 취득하기 위해서는 고가의 장비 사용이 필수적이다. 따라서 본 연구에서는 저해상도의 반사 강도 영상을 고해상도의 영상으로 개선하는 인공지능을 개발하였다. 이를 위해서 본 연구에서는 최적의 초해상화 신경망 모델을 위한 파라미터 분석을 수행하였다. 또한, 초해상화 알고리즘을 2,500여 장의 반사 강도 영상에 적용하여 훈련과 검증을 하였다. 결과적으로 반사 강도 영상의 해상도를 향상시켰다. 바라건대 본 연구의 결과가 향후 자율 주행 분야에 적용되어 주행환경 인식과 장애물 탐지 성능 향상에 기여할 수 있기를 기대하는 바이다.

POST-TAVR ECG 기반의 PPI 예측 모델 연구 (Research of PPI prediction model based on POST-TAVR ECG)

  • 송인서;양세모;이강윤
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.29-38
    • /
    • 2024
  • 경피적 대동맥 판막 치환술(TAVR) 후에는 인공 심박동기 삽입술(PPI)을 비롯한 TAVR 이후 합병증에 대한 철저한 관리가 필요하며 그에 따라 정확한 예측 모델에 대한 필요성이 점점 증가하고 있다. 본 연구는 기존의 이미지 의존적 방법론에서 벗어나 ECG 정보를 중심으로 예측하는 XGBoost 기반의 최적의 PPI 예측 모델을 개발했다. 이 모델은 심전도상의 특정 신호들인 DeltaPR, DeltaQRS 등을 주요 지표로 삼아, 환자의 전도 장애 및 PPI와의 연관성을 파악하며, 기존의 이미지와 ECG 데이터를 결합한 모델과 ECG 기반의 모델 보다 뛰어난 AUC 0.91 성능을 달성하였다. 본 연구에서 제안하는 모델은 두 병원의 데이터를 기반으로 최적의 PPI 예측 모델을 구현 및 검증하였으며, 검증 결과 ECG 데이터의 특성이 PPI 예측에 큰 영향을 미치며 95.28%의 높은 유사도를 보였다. 이로써 본 연구의 예측 모델이 다양한 병원 데이터에도 효과적으로 적용될 수 있음을 확인하였다. 최적의 머신러닝 알고리즘을 사용하여 PPI와 각 특성 간의 상관관계를 명확히 했으며, 고비용의 의료 이미지에 의존하지 않고 ECG 데이터를 사용하여 높은 정확도로 PPI를 예측할 수 있음을 입증하였다. 이는 의료 결정 과정에서 인간 개입의 의존도를 줄이며, 신뢰할 수 있고 실용적인 PPI 예측 모델 개발로의 중요한 진전을 의미한다.

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • 제25권4호
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.

사출 성형 공정에서의 변수 최적화 방법론 (Methodology for Variable Optimization in Injection Molding Process)

  • 정영진;강태호;박정인;조중연;홍지수;강성우
    • 품질경영학회지
    • /
    • 제52권1호
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.