Acknowledgement
This work was supported by Medical AI Clinic Program through the National IT Industry Promotion Agency (NIPA), funded by the Ministry of Science and ICT (MSIT).
References
- Salim M, Dembrower K, Eklund M, Lindholm P, Strand F. Range of radiologist performance in a population-based screening cohort of 1 million digital mammography examinations. Radiology 2020;297:33-39 https://doi.org/10.1148/radiol.2020192212
- Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol 2012;198:W292-W295 https://doi.org/10.2214/AJR.10.6049
- Yoon JH, Strand F, Baltzer PAT, Conant EF, Gilbert FJ, Lehman CD, et al. Standalone AI for breast cancer detection at screening digital mammography and digital breast tomosynthesis: a systematic review and meta-analysis. Radiology 2023;307:e222639
- McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020;577:89-94 https://doi.org/10.1038/s41586-019-1799-6
- Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan Y, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 2020;3:e200265
- Lee JH, Kim KH, Lee EH, Ahn JS, Ryu JK, Park YM, et al. Improving the performance of radiologists using artificial intelligence-based detection support software for mammography: a multi-reader study. Korean J Radiol 2022;23:505-516 https://doi.org/10.3348/kjr.2021.0476
- Kim HE, Kim HH, Han BK, Kim KH, Han K, Nam H, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2020;2:e138-e148 https://doi.org/10.1016/S2589-7500(20)30003-0
- Gao Y, Geras KJ, Lewin AA, Moy L. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence. AJR Am J Roentgenol 2019;212:300-307 https://doi.org/10.2214/AJR.18.20392
- Erickson BJ, Korfiatis P, Kline TL, Akkus Z, Philbrick K, Weston AD. Deep learning in radiology: does one size fit all? J Am Coll Radiol 2018;15(3 Pt B):521-526 https://doi.org/10.1016/j.jacr.2017.12.027
- Yoon JH, Kim EK. Deep learning-based artificial intelligence for mammography. Korean J Radiol 2021;22:1225-1239 https://doi.org/10.3348/kjr.2020.1210
- Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001;358:1389-1399 https://doi.org/10.1016/S0140-6736(01)06524-2
- Kim EK, Kim HE, Han K, Kang BJ, Sohn YM, Woo OH, et al. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Sci Rep 2018;8:2762
- Salim M, Wahlin E, Dembrower K, Azavedo E, Foukakis T, Liu Y, et al. External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol 2020;6:1581-1588 https://doi.org/10.1001/jamaoncol.2020.3321
- Lee SE, Han K, Yoon JH, Youk JH, Kim EK. Depiction of breast cancers on digital mammograms by artificial intelligence-based computer-assisted diagnosis according to cancer characteristics. Eur Radiol 2022;32:7400-7408 https://doi.org/10.1007/s00330-022-08718-2
- D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BI-RADS atlas: breast imaging reporting and data system. Reston, VA: American College of Radiology, 2013
- Hickman SE, Woitek R, Le EPV, Im YR, Mouritsen Luxhoj C, Aviles-Rivero AI, et al. Machine learning for workflow applications in screening mammography: systematic review and meta-analysis. Radiology 2022;302:88-104 https://doi.org/10.1148/radiol.2021210391