Journal of International Society for Simulation Surgery
/
제3권1호
/
pp.1-8
/
2016
In the field of Radiology, the Computer Aided Diagnosis is the technology which gives valuable information for surgical purpose. For its importance, several computer vison methods are processed to obtain useful information of images acquired from the imaging devices such as X-ray, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). These methods, called pattern recognition, extract features from images and feed them to some machine learning algorithm to find out meaningful patterns. Then the learned machine is then used for exploring patterns from unseen images. The radiologist can therefore easily find the information used for surgical planning or diagnosis of a patient through the Computer Aided Diagnosis. In this paper, we present a review on three widely-used methods applied to Computer Aided Diagnosis. The first one is the image processing methods which enhance meaningful information such as edge and remove the noise. Based on the improved image quality, we explain the second method called segmentation which separates the image into a set of regions. The separated regions such as bone, tissue, organs are then delivered to machine learning algorithms to extract representative information. We expect that this paper gives readers basic knowledges of the Computer Aided Diagnosis and intuition about computer vision methods applied in this area.
With the increasing resolution of modern CT scanners, analysis of the larger numbers of images acquired in a lung screening exam or diagnostic study is necessary, which also needs high accuracy and reproducibility. Recent developments in the computerized analysis of medical images are expected to aid radiologists and other healthcare professional in various diagnostic tasks of medical image interpretation. This article is to provide a brief overview of some of computer-aided diagnosis schemes in chest CT.
최근 국내 여성의 유방암 발생율은 1위를 차지하며 그 비율 또한 나날이 늘어가고 있는 추세이다. 하지만 유방암은 다른 암에 비해 5년간 관찰 생존율이 약 76%로 갑상선에 이어 두 번째의 생존율을 보이며, 이는 조기발견의 중요성을 다시 한번 상기시키게 한다. 하지만 국내에서 사용되는 유방암 조기검진 방법에는 Mammography(유방촬영술)와 초음파 진단 두 가지가 주를 이루고 있으나 촬영과정 및 장비에 따른 오차로 인한 객관화된 정보생성 부족 및 전달의 부족으로 문제점이 대두되고 있다. 본 연구에서는 Mamography 및 초음파 유방 진단술을 이용하여 전문의의 의사결정에 도움을 줄 수 있는 CAD(Computer Aided Diagnosis) 시스템의 유방암 진단의 특징을 이용, 전문의 관점의 모델링을 기술해보고자 한다.
본 논문에서는 스마트 헬스케어 서비스 시스템의 바이오 데이터 분석 과정을 프로세스로 해석하기 위하여, 온톨로지 기반 통계학적 개인 맞춤형 질병예측 기법인 PCADP(Personalized Computer Aided Diagnosis Probability)를 제안하였다. 또한 이러한 개인 맞춤형 질병예측 기법을 바탕으로 스마트 헬스케어 데이터 및 헬스케어 서비스 명세의 의미 있는 표현을 위하여 헬스케어 온톨로지 프레임워크를 시맨틱스형으로 모델링하였다. PCADP 기법은 스마트 헬스케어 환경에서 개인 맞춤형 판별 기법이 갖추어야 할 조건인 실시간 처리, 유연한 구조, 판별과정의 모니터링, 지속적인 개선 등에 부합하는 통계학적 질병예측 기법임을 확인하였다.
Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.
This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.
The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.
최근 몇 년간 방사선 의학진단과 관련된 연구가 한층 높아진 가운데 유방암은 여성의 암 중에서 1위를 차지하고 조기에 진단하고 치료하기 위한 국가적인 노력이 필요한 시점이다. 이렇듯 여성들의 유방암 발생빈도수가 급증하면서 대두 되고 있는 것이 조기 진단방법인 Mammography와 초음파 진단이며 그로인하여 발생하는 오진률 역시 많은 연구가 진행 되고 있다. 먼저 Mammography 및 초음파 진단의 문제점 보면 첫째 촬영과정에서의 오차, 둘째 영상의 선명도 ,셋째 전문의의 판독에 대한오차, 넷째 의사의 경험으로 진단함으로 표준화가 존재하지 않는다는 공통적인 문제점을 가지고 있다. 본 연구에서는 CAD 시스템의 프레임웍 및 요소 기술을 제시하여 의사의 진단을 보조적 수행이 보다 수월하도록 하고자 한다. 본 연구에서는 CAD시스템의 기능은 Detection기능(Image enhancement, Morphology, segment detection)과 Diagnosis기능( Neural Natwork등을 이용하여 증상을 판단)이다. 또한 과거 자료를 이용한 변이 및 변화를 예측함으로써 향후 있을 위험요소에 대비가 가능한 모듈과 전문의사가 대화형으로 빠르게 진단지식을 구축할 수 있는 지능형, 대화형 온라인 진단기능을 추가함으로써 외국의 CAD시스템과는 많은 차이가 있다고 볼 수 있다.
Computer-aided diagnosis of breast cancer is an important medical approach. In this research paper, we focus on combining two major methodologies, namely fuzzy base systems and the evolutionary genetic algorithms and on applying them to the Saudi Arabian breast cancer diagnosis database, to aid physicians in obtaining an early-computerized diagnosis and hence prevent the development of cancer through identification and removal or treatment of premalignant abnormalities; early detection can also improve survival and decrease mortality by detecting cancer at an early stage when treatment is more effective. Our hybrid algorithm, the genetic-fuzzy algorithm, has produced optimized systems that attain high classification performance, with simple and readily interpreted rules and with a good degree of confidence.
지난 몇년간 유방 초음파영상을 이용한 신호 및 영상처리 기술과 자동 영상 최적화 기술, 유방 종괴 자동 검출 및 분류 기술 등, 컴퓨터 보조 진단(computer-aided diagnosis, CAD)을 활용하는 연구들이 활발히 진행되어지고 있다. 컴퓨터진단기술이 개발될수록 암의 조기 발견이 정확하고 빠르게 진행되어 건강 보험과 환자의 검사 빙용을 줄일 수 있고 조직 검사에 대한 불안감을 없앨 수 있을 것으로 기대된다. 본 논문에서는 GLCM(gray level co-occurrence matrix)을 사용하여 초음파 영상에서 종양의 정량적 분석을 진행하여 컴퓨터보조 진단에 활용 가능성을 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.