• Title/Summary/Keyword: optimal learning

Search Result 1,243, Processing Time 0.026 seconds

Pedagogical Discussion on the concept of Tangent as a Linear Approximation (선형 근사로서의 접선 개념의 교육학적 고찰)

  • Kim, Young-Rock;Lee, Young-Ie;Han, Jong-Min
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.625-642
    • /
    • 2009
  • In the school mathematics the concept of tangent is introduced in several steps in suitable contexts. Students are required to reflect and revise their concepts of tangent in order to apply the improved concept to wider range of contexts. In this paper we consider the tangent as the optimal linear approximation to a curve at a given point and make three discussions on pedagogical aspects of it. First, it provides a method of finding roots of real numbers which can be used as an application of tangent. This may help students improve their affective variables such as interest, attitude, motivation about the learning of tangent. Second, this concept reflects the modern point of view of tangent, the linear approximation of nonlinear problems. Third, it gives precise meaning of two tangent lines appearing two sides of a cusp point of a curve.

  • PDF

An Optimal Cluster Analysis Method with Fuzzy Performance Measures (퍼지 성능 측정자를 결합한 최적 클러스터 분석방법)

  • 이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.81-88
    • /
    • 1996
  • Cluster analysis is based on partitioning a collection of data points into a number of clusters, where the data points in side a cluster have a certain degree of similarity and it is a fundamental process of data analysis. So, it has been playing an important role in solving many problems in pattern recognition and image processing. For these many clustering algorithms depending on distance criteria have been developed and fuzzy set theory has been introduced to reflect the description of real data, where boundaries might be fuzzy. If fuzzy cluster analysis is tomake a significant contribution to engineering applications, much more attention must be paid to fundamental questions of cluster validity problem which is how well it has identified the structure that is present in the data. Several validity functionals such as partition coefficient, claasification entropy and proportion exponent, have been used for measuring validity mathematically. But the issue of cluster validity involves complex aspects, it is difficult to measure it with one measuring function as the conventional study. In this paper, we propose four performance indices and the way to measure the quality of clustering formed by given learning strategy.

  • PDF

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.427-432
    • /
    • 2019
  • In this paper, we propose three approaches to modeling Android malware. The first method involves human security experts for meticulously selecting feature sets. With the second approach, we choose 300 features with the highest importance among the top 99% features in terms of occurrence rate. The third approach is to combine multiple models and identify malware through weighted voting. In addition, we applied a novel method of eliminating permission information which used to be regarded as a critical factor for distinguishing malware. With our carefully generated feature sets and the weighted voting by the ensemble algorithm, we were able to reach the highest malware detection accuracy of 97.8%. We also verified that discarding the permission information lead to the improvement in terms of false positive and false negative rates.

Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites (건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적)

  • Cho, Young-Woon;Kang, Kyung-Su;Son, Bo-Sik;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.397-408
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries and has experienced the most fatalities among entire industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. A long-time monitoring surveillance system causes high physical fatigue and has limitations in grasping all accidents in real-time. Therefore, this study aims to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple object tracking with instance segmentation. To evaluate the system's performance, we utilized the Microsoft common objects in context and the multiple object tracking challenge metrics. These results prove that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Policy Directions and Challenges for Revitalizing of Small School in Local Community (지역사회 소규모학교 살리기 정책 방향과 해결 과제)

  • Cho, Kum-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2019
  • With the low birth rate and the inner city decline, the number of small schools is expected to increase. In this trend, the Ministry of Education has consistently used the number of students as a standard for the merger and abolition of schools since 1982, but it seems that has generated a vicious circle of education in rural areas and also it did not reflect realistic requirements and changes in the times although it is efficiency of local education finances. With the number of students constantly decreasing, it has a high probability to make villages without schools in urban areas if decisions are made by the number of students. In this sense, it is suggested that regional contexts and socioeconomic environment should be taken into account rather than to conduct the merger and abolition of small schools with economic logic. It is necessary to change the direction of improving the quality of education through the operation of small schools for coexistence of schools and villages and a cultivating the manpower needed in the 21st century knowledge information society and the 4th industrial revolution era. Therefore, we tried to find tasks for expanding small schools of the local community and developing small schools suitable for future social change.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

Prediction Model for Unpaid Customers Using Big Data (빅 데이터 기반의 체납 수용가 예측 모델)

  • Jeong, Jaean;Lee, Kyouhwan;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.827-833
    • /
    • 2020
  • In this paper, to reduce the unpaid rate of local governments, the internal data elements affecting the arrears in Water-INFOS are searched through interviews with meter readers in certain local governments. Candidate data affecting arrears from national statistical data were derived. The influence of the independent variable on the dependent variable was sampled by examining the disorder of the dependent variable in the data set called information gain. We also evaluated the higher prediction rates of decision tree and logistic regression using n-fold cross-validation. The results confirmed that the decision tree can find more accurate customer payment patterns than logistic regression. In the process of developing an analysis algorithm model using machine learning, the optimal values of two environmental variables, the minimum number of data and the maximum purity, which directly affect the complexity and accuracy of the decision tree, are derived to improve the accuracy of the algorithm.