• Title/Summary/Keyword: optimal iterative methods

Search Result 91, Processing Time 0.023 seconds

A Study on Dynamic Asset Allocation Strategy for Optimal Portfolio Selection

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.25 no.3
    • /
    • pp.310-336
    • /
    • 2021
  • We use iterative numerical procedures combined with analytical methods due to Rapach and Wohar (2009) to solve for the dynamic asset allocation strategy for optimal portfolio demand. We compare different optimal portfolio demands when investors in each country have different access to overseas and domestic investment opportunities. The optimal dynamic asset allocation strategy without foreign investment opportunities leads domestic investors in Korea, Hong Kong, and Singapore to allocate more funds to domestic bonds than to domestic stocks. However, the U.S. investors allocate more wealth to domestic stocks than to domestic bonds. Investors in all countries short bills at a low level of risk aversion. Next, we investigate dynamic asset allocation strategy when domestic investors in Korea have access to foreign markets. The optimal portfolio demand leads investors in Korea to allocate most resources to domestic bonds and foreign stocks. On the other hand, the portfolio weights on foreign bonds and domestic stocks are relatively low. We also analyze dynamic asset allocation strategy for the investors in the U.S., Hong Kong, and Singapore when they have access to the Korean markets as overseas investment opportunities. Compared to the results when the investors only have access to domestic markets, the investors in the U.S. and Singapore increase the portfolio weights on domestic stocks in spite of the overseas investment opportunities in the Korean markets. The investors in the U.S., Hong Kong, and Singapore short domestic bills to invest more than initial funds in risky assets with a varying degree of relative risk aversion coefficients without exception.

Optimal Design of Lightweight Two-Speed Transmission of Electric Vehicles (전기자동차용 2속 변속기의 경량 최적 설계)

  • Choi, Jaehoon;Suh, Junho;Park, Nogil
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • The electric vehicle industry is rapidly developing because of enforced environmental regulations, and several studies have been conducted on the multispeed transmission to improve the fuel efficiency of electric vehicles. Among these studies, research on the power density improvement of electric vehicle transmission is critical. Thus, the optimal design of the gear train is necessary to enhance transmission efficiency. In this study, an optimal design methodology for the lightweight two-speed transmission of electric vehicles is proposed. Because a multispeed transmission has many operating conditions and equality and inequality constraints, a new gear design method that combines analytical and iterative methods is applied without using complex optimization algorithms. Sets of possible design variables are generated considering the operating conditions and various design variables. The modules and face width ratios of each stage gear that satisfy the corresponding operating conditions are analytically calculated. The volume of the gear train is calculated, evaluated, and arranged using these values to determine the optimal solution for minimizing the volume, and the proposed methodology is applied to the actual model to verify its effectiveness. The design of a two-speed transmission with multiple operating conditions and constraints without complicated optimization algorithms can be optimized.

Experimental Test Time Reduction Method for Step Responses Using the Time-Optimal Control Technique (시간최적제어 기법을 이용한 계단응답 실험시간 단축 방법)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • The step to obtain a process dynamic model through process experiments is very important because it needs times and expenditures. Step response method is one of the standard methods to have long been used for understanding process dynamics, obtaining dynamical models and designing control systems. For the step response, it is usually required to measure process output for a step input change in the open-loop manner. Its disadvantage criticized is the long open-loop operation. For this, a method based on the time-optimal control technique to minimize the test time for obtaining the step response has been recently presented. However, the method requires iterative computations for the minimization of test times. Here, a method where iterative computations are not required is proposed. Simulation results are presented to show that test times to obtain step responses are reduced considerably and an autotuning method based on the proposed method is compared with the relay feedback autotuning method accepted widely for the autotuning of controllers.

STUDY OF OPTIMAL EIGHTH ORDER WEIGHTED-NEWTON METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Kumar, Deepak;Sharma, Janak Raj
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.677-693
    • /
    • 2018
  • In this work, we generalize a family of optimal eighth order weighted-Newton methods to Banach spaces and study its local convergence to approximate a locally-unique solution of a system of nonlinear equations. The convergence in this study is shown under hypotheses only on the first derivative. Our analysis avoids the usual Taylor expansions requiring higher order derivatives but uses generalized Lipschitz-type conditions only on the first derivative. Moreover, our new approach provides computable radius of convergence as well as error bounds on the distances involved and estimates on the uniqueness of the solution based on some functions appearing in these generalized conditions. Such estimates are not provided in the approaches using Taylor expansions of higher order derivatives which may not exist or may be very expensive or impossible to compute. The convergence order is computed using computational order of convergence or approximate computational order of convergence which do not require usage of higher derivatives. This technique can be applied to any iterative method using Taylor expansions involving high order derivatives. The study of the local convergence based on Lipschitz constants is important because it provides the degree of difficulty for choosing initial points. In this sense the applicability of the method is expanded. Finally, numerical examples are provided to verify the theoretical results and to show the convergence behavior.

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR TWO-DIMENSIONAL PROBLEMS

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.477-488
    • /
    • 2012
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the mixed interface condition, controlled by a parameter, can optimize SAM's convergence rate. In [8], one introduced the two-layer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. In this paper, we present a method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

A New Approach for Pulsating Torque Minimization of BLDC Motor

  • Lee, Young-Jin;Lee, Man-Hyung;Park, Sung-Jun;Park, Han-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.831-838
    • /
    • 2001
  • Torque ripple control of brushless DC motor has long been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise need to be minimized. The vast majority of the methods for suppressing the torque ripple require the Fourier series analysis and either the iterative or least mean square minimization. In this paper, a novel approach based on the d-q-0 reference frame that achieves ripple-free torque control with maximum efficiency is presented. The proposed method optimizes the reference phase current waveforms including even the case of 3-phase unbalanced condition, and the motor winding currents are controlled to track the optimized current waveforms by the delta modulation technique. As a results, the proposed approach provides a simple and yet effectine means for obtaining the optimal motor excitation currents. The validity and applicability of the proposed control scheme are verified through simulations and experimental investigations.

  • PDF

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform (고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어)

  • Han, Sang-In;Lee, Myeong-Gyu;Kim, Jin-Tae;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

LCL Filter Design Method for Grid-Connected PWM-VSC

  • Majic, Goran;Despalatovic, Marin;Terzic, Bozo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1945-1954
    • /
    • 2017
  • In recent years, several LCL filter design methods for different converter topologies have been published, many of which use analytical expressions to calculate the ideal converter AC voltage harmonic spectrum. This paper presents the LCL filter design methodology but the focus is on presentation and validation of the non-iterative filter design method for a grid-connected three-phase two-level PWM-VSC. The developed method can be adapted for different converter topologies and PWM algorithms. Furthermore, as a starting point for the design procedure, only the range of PWM carrier frequencies is required instead of an exact value. System nonlinearities, usually omitted from analysis have a significant influence on VSC AC voltage harmonic spectrum. In order to achieve better accuracy of the proposed procedure, the system nonlinear model is incorporated into the method. Optimal filter parameters are determined using the novel cost function based on higher frequency losses of the filter. An example of LCL filter design for a 40 kVA grid-connected PWM-VSC has been presented. Obtained results have been used to construct the corresponding laboratory setup and measurements have been performed to verify the proposed method.

Performance and Convergence Analysis of Tree-LDPC codes on the Min-Sum Iterative Decoding Algorithm (Min-Sum 반복 복호 알고리즘을 사용한 Tree-LDPC의 성능과 수렴 분석)

  • Noh Kwang-seok;Heo Jun;Chung Kyuhyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.20-25
    • /
    • 2006
  • In this paper, the performance of Tree-LDPC code is presented based on the min-sum algorithm with scaling and the asymptotic performance in the water fall region is shown by density evolution. We presents that the Tree-LDPC code show a significant performance gain by scaling with the optimal scaling factor which is obtained by density evolution methods. We also show that the performance of min-sum with scaling is as good as the performance of sum-product while the decoding complexity of min-sum algorithm is much lower than that of sum-product algorithm. The Tree-LDPC decoder is implemented on a FPGA chip with a small interleaver size.