• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.03 seconds

A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump (사판식 액시얼 피스톤 펌프의 가변용량 시스템의 특성에 관한 연구)

  • Kim, Shin;Oh, Suk-Hyung;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 1998
  • Recently, the importance of variable displacement piston pump is increasing in industrial world. Especially, most consumers require various range of pressures and flow rates. Pressure compensator is a system controlling flow rate in piston pump at low cost and, therefore, satisfies the need of consumers. However, the system has serious problems, such as response and leakage. The response and leakage are affected by clearance between actuator piston and cylinder, roughness of surface, and spool overlap. In this paper, these effects are investigated experimentally, and optimal clearance and chamfer is obtained. While diameter of cylinder is fixed and diameter of actuator piston is changed in this experiment, response and leakage are measured. Also parameters such as roughness and processing accuracy are changed for piston of fixed clearance. Experimental setup modelled into several parts of actuator piston, cylinder, spool, and swash plate. Input pressure is changed by function generator and proportional valve. The result of this experiment shows that leakage increases very much in proportion to the increase of clearance, and especially leakage occurs enormously when clearance is more than 0.002. The response is not good because as clearance increases leakage increases and as clearance decreases viscous damping effect increases. Accordingly, it is found out that optimal clearance range exists for tile response, within about 0.0012∼0.0014, at this time. Futhermore, the better roughness and geometrical accuracy of actuator piston are, the smaller are leakage and friction. The paper informs that response and leakage are influenced by and geometrical accuracy of actuator piston, roughness of surface, and the clearance between actuator piston and cylinder, and that optimal design of actuator piston in the pressure compensator is possible.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

Optimal Grip Span of A-type Pliers in a Maximum Gripping Task

  • Kong, Yong-Ku;Jung, Jin Woo;Kim, Sangmin;Jung, Heewoong;Yoo, Hakje;Kim, Dae-Min;Kang, Hyun-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Objective: The objective of this study is designing an optimal hand tool through maximum grip force study accordance to the hand grip span. Background: In order to prevent musculoskeletal diseases, studies on hand tool design are proceeding based on grip strength, finger force, and contribution of individual finger force on total grip strength. However, experimental apparatus using a tool that is actually used in work place was almost non-existent. Method: 19 males were participated in an experiment. Using the load cell inserted real plier, finger force, grip strength, and subjective discomfort rate of both hands (dominant and non-dominant) were measured in 5 different hand grip span(45mm, 50mm, 60mm, 70mm, and 80mm). Results: There was significant difference(p<0.001) of total grip strength, individual finger force and subjective discomfort rating according to various hand grip span(45, 50, 60, 70, and 80mm). Also, statistically significant different(p<0.001) was shown between the dominant hand and non-dominant hand. In addition, individual finger force in maximum grip was in order of middle finger, ring finger, index finger, and little finger. Conclusion: Optimal grip span of pliers that exerting maximum grip strength is 50~60mm. Application: This finding is expected to be used for designing proper pliers.

Nitrification Performance of a Moving Bed Bioreactor (MBBR) at Different Ammonia and Hydraulic Air-Loading Rates under Seawater Conditions (해수 조건에서 총암모니아성 질소 부하량과 수리학적 공기 부하량에 따른 유동상 여과조의 질산화 성능 평가)

  • Jaegeon Lee;Younghun Lee;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.870-877
    • /
    • 2023
  • The purpose of this study was to assess the efficiency of nitrification based on ammonia loading rates and hydraulic air-loading rates in a moving bed bioreactor (MBBR) under seawater conditions. The goal was to provide foundational data for the design of these bio reactors. At an ammonia loading rate of 0.2 g TAN·m-2 surface area·day-1, the influent TAN concentration was determined to be 1.76±0.33 mg·L-1, which is below the safe concentration for fish survival (2 mg·L-1). Considering operational aspects, the optimal ammonia-loading rate was derived. Subsequently, experimental results for nitrification efficiency at the optimal ammonia-loading rate revealed that the optimum hydraulic air-loading rate was 1.8 L·air·m-2 surface area·min-1. This condition resulted in the lowest concentrations of TAN and NO2-N in the influent water, thus establishing the optimal hydraulic air-loading rate. A regression equation was derived for the ammonia-removal rate (Y) based on the ammonia-loading rate (x) and expressed as a 0.5-order equation (Y=ax0.5+b). Specifically, for TAN concentrations of 0-6 mg·L-1, the regression equation Y=0.1683x0.5-0.13628, was established.

Determination of the Optimal Mixture Ratio for Extrudates of Job's-tear and Wheat Flour by Mixture Design Analysis (혼합실험계획법에 의한 율무와 밀가루의 압출성형 최적 배합 조건 설정)

  • Cho, Seok-Cheol;Kang, Byung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.473-477
    • /
    • 2013
  • The aim of this study was to identify the optimal ingredient-mixing ratio of Job's-tear and wheat flour subjected to extrusion. A modified distance-based mixture design analysis was chosen for the experimental design. The results showed that the bending failure force, the a-value, and the water absorbtion index (WAI) value had no correlation with the mixture ratio of Job's-tear and wheat flour. However, the diameter of the extrudates, the L- and b-values, and the water solubility index (WSI) value were all found to be correlated to the mixture ratio. While the first three values were determined using a linear model, the WSI value was determined using a quadratic model. The diameter and color had an inverse correlation to the mixture ratio: the higher the ratio of Job's-tear to wheat flour, the lower the diameter and darker the color. The L- and b-values were found to change in accordance with the mixture ratio of Job's-tear to wheat flour. The lowest WSI value was obtained at a 40:60 ratio of Job's-tear to wheat.

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology (반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법)

  • Baek, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2019
  • The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

Prediction of Parathyroid Hormone Signalling Potency Using SVMs

  • Yoo, Ahrim;Ko, Sunggeon;Lim, Sung-Kil;Lee, Weontae;Yang, Dae Ryook
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.547-556
    • /
    • 2009
  • Parathyroid hormone is the most important endocrine regulator of calcium concentration. Its N-terminal fragment (1-34) has sufficient activity for biological function. Recently, site-directed mutagenesis studies demonstrated that substitutions at several positions within shorter analogues (1-14) can enhance the bioactivity to greater than that of PTH (1-34). However, designing the optimal sequence combination is not simple due to complex combinatorial problems. In this study, support vector machines were introduced to predict the biological activity of modified PTH (1-14) analogues using mono-substituted experimental data and to analyze the key physicochemical properties at each position that correlated with bioactivity. This systematic approach can reduce the time and effort needed to obtain desirable molecules by bench experiments and provide useful information in the design of simpler activating molecules.

A Study on the Pyrolysis and Combustion Characteristics of Solid Waste in a Pilot scale Pyrolysis Melting Incinerator (Pilot 규모의 열분해 용융 소각 시스템에서의 열분해 및 연소 특성 연구)

  • Yu, Tae-U;Yang, Won;Park, Ju-Won;Kim, Bong-Keun;Lee, Gi-Bang;Kim, Hi-Yeol;Park, Sang-Shin;Jeon, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.168-174
    • /
    • 2006
  • A pilot scale (200kg/hr) pyrolysis melting incineration system is designed and constructed in Korea Institute of Industrial Technology. The incineration process is composed of pyrolysis, gas combustion, ash melting, gas stabilization, waste heating boiler, and bag filter. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. Especially, a pyrolysis is very important process in that it is a way of energy recirculation and minimizing the waste products. This paper presents major results of the most efficient operating conditions in a pilot scale pyrolysis melting incinerator.

  • PDF

EMI Analysis of Soft Switching Inverter on High Power AC Motor Drive (대전력 교류전동기 구동용 소프트 스위칭 인버터의 EMI 해석)

  • 권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.76-81
    • /
    • 2002
  • In high power motor drive system, the hard-switching topology produces severs switching losses and EMI noises. Also the inverter switching frequency is thus limited because of excessive loss and thermal handling problem. The primary purpose of the proposed works on the induction motor drive system is to develop an advanced soft-switching inverter topology that is most suitable for high power induction motor drive applications. To make the optimal selection EMI comparison of the switching losses presented. To verify the proposed design procedure, detailed simulation analysis with theoretical and experimental approaches have been done using laboratory prototype.

  • PDF