DOI QR코드

DOI QR Code

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology

반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법

  • Baek, Seung-Koo (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Jeon, Chang-Sung (Advanced Railroad Vehicle Division, Korea Railroad Research Institute)
  • 백승구 (한국철도기술연구원 차세대철도차량본부) ;
  • 전창성 (한국철도기술연구원 차세대철도차량본부)
  • Received : 2019.05.16
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

매입형 영구자석 동기전동기(IPMSM : Interior Permanent Magnet Synchronous Motor, 이하 IPMSM)의 회전자 자석의 크기 및 위치와 고정자 슬롯의 크기는 출력 토크 및 토크 리플률 특성에 영향을 준다. 본 논문은 반응표면분석법(RSM : Response Surface Methodology, 이하 RSM)을 이용한 IPMSM의 토크와 토크 리플률(ripplerate) 향상을 위한 최적설계 방법에 대해 다룬다. 토크 출력과 토크 리플률에 영향을 주는 설계변수에 대하여 Plackett-Burmann(PB, 이하 PB)의 민감도 분석을 통해 토크 출력 및 토크 리플 두 가지 목적함수에 영향이 큰 설계변수를 도출하였다. 도출된 목적함수로부터 2차 설계변수를 선정하였으며 중심합성계획법(CCD : Central Composite Design, 이하 CCD)에 따른 실험계획표 정의 및 해석결과를 통해 RSM의 2차 회귀모형 함수를 추정하였다. 2차 회귀모형함수는 분산분석표(ANOVA table)를 활용한 검증 기준을 통해 신뢰성을 가짐을 확인하였다. 실험계획표에 따른 해석은 유한요소법(FEM : Finite Element Method, 이하 FEM) 해석 소프트웨어인 JMAG을 통하여 실험 결과를 확인하였다. 최적화된 최종 설계변수를 적용한 IPMSM의 최적설계 결과는 토크와 토크 리플률을 모두 고려할 경우, 토크 출력은 11.5 % 증가하였으며 토크 리플률은 9.1 % 감소하였다.

Keywords

SHGSCZ_2019_v20n6_557_f0001.png 이미지

Fig. 1. Optimization procedure

SHGSCZ_2019_v20n6_557_f0002.png 이미지

Fig. 2. Appearance of IPMSM and Position of characteristic variables

SHGSCZ_2019_v20n6_557_f0003.png 이미지

Fig. 3. Torque output of initial design for IPMSM

SHGSCZ_2019_v20n6_557_f0004.png 이미지

Fig. 4. Sensitivity analysis results (a) torque output (b) ripplerate

SHGSCZ_2019_v20n6_557_f0005.png 이미지

Fig. 5. FEM Simulation result for torque and ripplerate

SHGSCZ_2019_v20n6_557_f0006.png 이미지

Fig. 6. Torque output of optimized design for IPMSM

Table 1. PB design in 12 run

SHGSCZ_2019_v20n6_557_t0001.png 이미지

Table 2. Experimental plan table using CCD,  

SHGSCZ_2019_v20n6_557_t0002.png 이미지

Table 3. Characteristic variables and values

SHGSCZ_2019_v20n6_557_t0003.png 이미지

Table 4. Experimental plan table for PB sensitivity analysis

SHGSCZ_2019_v20n6_557_t0004.png 이미지

Table 5. FEM Simulation result according to PB table

SHGSCZ_2019_v20n6_557_t0005.png 이미지

Table 6. CCD table for optimal design

SHGSCZ_2019_v20n6_557_t0006.png 이미지

Table 7. FEM result according to CCD

SHGSCZ_2019_v20n6_557_t0007.png 이미지

Table 8. ANOVA table

SHGSCZ_2019_v20n6_557_t0008.png 이미지

References

  1. T. M. Jahns, G. B. Kliman, T. W. Neumann, "Interior Permanetn-Magnet Synchronous Motors for Adjustable-Speed Drives". IEEE Transactions on Industry Applications. Vol. IA-22, No. 4, pp.738-747, July/August, 1986. https://doi.org/10.1109/TIA.1986.4504786
  2. R. H. Myers, D. C. Montgomery. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, Inc. 1995.
  3. Y. H. Im. S. K. Hwang, S. M. Jang, J. Y. Choi, and J. H. Choi, "Analysis of Torque Pulsation Considering Interior Permanent Magnet Rotor Rib Shape Using Response Surface Methodology", IEEE Transactions on Magnetics, Vol. 48, No. 2, pp.979-981, 2012. https://doi.org/10.1109/TMAG.2011.2176534
  4. T. Ishikawa, M. Yamada, and N. Kurita, "Design of Magnet Arrangement in Interior Permanent Magnet Synchronous Motor by Response Surface Methodology in Consideration of Torque and Vibration", IEEE Trans on Magnetics, Vol. 47, No. 5, pp.1290-1293, 2011. https://doi.org/10.1109/TMAG.2010.2091399
  5. L. Jolly, M. A. Jabbar, and L. Qinghua, "Design optimization of permanent magnet motors using response surface methodology and genetic algorithms," IEEE Transaction. Magnetics, Vol. 41, No. 10, pp.3928-3930, 2005. https://doi.org/10.1109/TMAG.2005.854966
  6. W. G. Yim, K. O. An, J. H. Seo and H. K. Jung, "A Study on Notch Shape Optimization for Interior Permanent Magnet Motor based on the Response Surface Method and Simplex Method," KIEE conference, pp.90-92, 2010.
  7. S. H. Park, "Design of Experiments," Minyoung Publishing Co., 2009.
  8. R. L. Plackett, J. P. Burman, "The Design of Optimum Multifactorial Experiments," Biometrika, Vol. 33, No. 4, pp.305-325, 1946. DOI: https://doi.org/10.1093/biomet/33.4.305