• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.028 seconds

A Scatter Search Algorithm for Network Design with Mean Packet Delay and Node Connectivity Constraints (평균패킷지연시간과 노드연결성 제약된 네트워크 설계를 위한 Scatter Search 알고리즘)

  • Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • This paper considers a topological optimization of a network design with mean packet delay and node connectivity constraints. The objective is to find the topological layout of links, at minimal cost. This Problem is known to be NP-hard. To efficiently solve the problem, a scatter search algorithm is proposed. An illustrative example is used to explain and test the proposal approach. Experimental results show evidence that the proposal approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic approach.

Genetic Algorithm in Mix Proportioning of High -Performance Concrete (고성능 콘크리트 배합 설계에서의 유전자 알고리즘의 적용)

  • 임철현;윤영수;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.551-556
    • /
    • 2002
  • High-performance concrete is defined as concrete that meets special combinations of performance and uniformity requirements that cannot always be achieved routinely using conventional constituents and normal mixing, placing, and curing practices. Ever since the term high-performance concrete was introduced into the industry, it had widely used in large-scale concrete construction that demands high-strength, high-flowability, and high-durability. To obtain such performances that cannot be obtained from conventional concrete and by the current method, a large number of trial mixes are required to select the desired combination of materials that meets special performance. In this paper, therefore, using genetic algorithm which is a global optimization technique modeled on biological evolutionary process-natural selection and natural genetics-and can be used to find a near optimal solution to a problem that may have many solutions, the new design method for high-performance concrete mixtures is suggested to reduce the number of trial mixtures with desired properties in the field test. Experimental and analytic investigations were carried out to develop the design method for high-performance concrete mixtures and to verify the proposed mix design.

  • PDF

A Study on the Vibration Characteristics for Safety Design of Vehicle Structure (차량 구조물 안전설계를 위한 진동특성에 관한 연구)

  • 신귀수;이기형
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 1998
  • This is a study on the natural vibration characteristics of Vehicle frame. Nowadays, many trucks freight the over-load, do the car designers consider the over-load about 200% in the design. It's necessary to make the model of a vehicle and simulate it for the test of driving condition, durability and vibration behavior before the vehicle is manufactured. If it is possible to make a simulation using the static and dynamic analysis, this is very useful in accomplishing an optimal design of the vehicle. In this paper, we studied the vibration characteristics of a truck body frame. The automobile body frame model for experiment is made smaller than real size frame with the ratio of 1/10. The vibration characteristics of a frame is considered as one of main factors in analyzing and improving the problem for ride comfort, noise and vibration reduction. Therefore, we experimented two method to neglect the nonlinearity. First is bolting and second is welding at the joint section. We compared computer simulation results and experimental data.

  • PDF

Design of a Swing Up Controller for Inverted Pendulum System (도립진자의 스윙업 제어기 설계)

  • Kwon, Yo-Han;Choi, Won-Ho;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.643-645
    • /
    • 1999
  • In experiment, a real inverted pendulum system has state constraints and limited amplitude of input. These problems make it difficult to design a swing-up controller. To overcome these problems, we design a sliding mode controller considering physical behaviour of the inverted pendulum system. This sliding mode controller uses a switching control action to converge along a specified path derived from energy equation from a state around the path to desired states(standing position). And optimal control method is used to guarantee stability at unstable equilibrium position. The designed controller can be applied to all inverted pendulum systems regardless of the values of their parameters. Compared with previous existing controllers, it is simple and easy to tune. Experimental results are given to show the effectiveness of this controller.

  • PDF

Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms (타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계)

  • Lee, Seong-Hwan;Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

Characteristic Analysis and Design of Switched Reluctance Motor for the Improved 2-phase Snail-earn Type Fan Motor

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.1-5
    • /
    • 2004
  • This paper deals with the design and analysis of a 2-phase Switched Reluctance Motor (SRM) used for the cooling fan motor of a refrigerator. To reduce the dead zone and improve the efficiency, the snail-earn type rotor pole and the asymmetric stator pole are investigated. For the optimal shape design, the performances of each model are obtained from numerical calculation results by 2D time-stepping finite element method (FEM) coupled with circuit equations. The accuracy of analysis is verified by comparing the analysis results with experimental data. According to the investigation results, improved shapes of stator and rotor poles are proposed.

Dynamic Analysis of the High-Speed Spindle Structure for Machining Center (머시닝센터용 고속주축 구조물의 동특성 해석)

  • 하재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.40-45
    • /
    • 1996
  • this paper presents a dynamic analysis of the high-speed spindle system for vertical machining center using finite element techniques. The computed natural frequencies are compared with the measured frequencies obtained from experimental modal analysis. The results show that the bending and twisting deformations of the spindle housign dominated in the lowest modes owing to low dynmic stiffness of the housing structure. The design parameters used in the analysis are:(a) panel thickness of the housing (b) height of the housing and (c) spindle-to-column distance of the housing. Through sensitivity analysis and optimizing simulation considering design constraints an optimal design of the spindle system has been obtained.

  • PDF

Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

  • Li, Zheng;Zhang, Lu;Lun, Qingqing;Jin, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.965-970
    • /
    • 2015
  • This paper uses response surface methodology as the optimization method of torque of multi-DOF deflection type PM motor. Firstly, the application of Taguchi algorithm selects structural parameters affecting the motor torque largely which simplifies the optimization process greatly. Then, based on the central composite design (CCD), response surface equation numerical model is constructed by the finite element method. With the aid of experiment design and analysis software, the effects of the interaction among factors on the index are analyzed. The results show that the analytical method is efficient and reliable and the experimental results can be predicted by response surface functions.

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.37-42
    • /
    • 1998
  • The important parts of the developing AGV model are the fabrication of each part and the design technology of body frame. In the present day, design of the body frame depends on the experience of the industrial place. the systematic data need for the optimal design of the frame for the case of model change. In this study, the strength of the early stage AGV(Automatic guided vehicle) is examined with the 3-dimensional finite elemnt method. In order to verify the finite element results, the computed results are compared with the experimental data from the strain-gage output. A New model was designed by rmoving some parts of the early staged(roughyly designed) model and choosing the thickness change of the rectangular-pipes.

  • PDF