• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.034 seconds

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

An Experimental Study on the High Performance Optimal Discharge System of a Rotary Compressor for an Air Conditioner using alternative Refrigerant R410a (대체냉매 공기조화기용 로터리 압축기의 성능향상을 위한 최적 토출계에 관한 실험적 연구)

  • Youn, Young;Chung, Jin-Taek;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 2001
  • R410a which is one of HFC refrigerants is being considered to be a promising replacement for R22 widely used in domestic air conditioners. The rolling piston type rotary compressors for R410a have lower energy efficiency than those for R22 because of the high pressure difference between a suction chamber and a discharge chamber in the compression mechanism. in addition, the re-expansion gas loss of the rotary compressor for R410a which occurs a ta clearance volume in a discharge port becomes larger than that for R22 due to high density of R410a refrigerant. Therefore, Pressure-Volume analyses for various design parameters of a discharge system were carried out to improve efficiency of a R410a rotary compressor. The results such as performance dta, over-compression loss, and re-expansion loss were acquired by P-V analyses and analyzed quantitatively. As a conclusion, the optimal specifications of several design parameters of a discharge system were obtained by analyzing P-V diagrams.

  • PDF

Fluid Dynamics Analysis and Experimental Trial to Improve the Switching Performance of Eco-friendly Gas Insulated Switch (친환경 가스개폐기 개폐성능 향상을 위한 유동해석 및 실험)

  • Yu, Lyun;Ahn, Kil-Young;Kim, Young-Geun;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.42-49
    • /
    • 2022
  • An underground electric switch is a high-voltage switch used in distribution network systems for a reliable power supply. Many studies are being conducted to expand the switch to use an eco-friendly gas using dry air instead of SF6 gas to reduce greenhouse gas emissions. In this study, a flow analysis model was established to improve the performance of an eco-friendly gas switch. The results were compared and reviewed through experiments. For the optimal arc grid design applied to the switch, the flow characteristics based on the flow path configuration and the changes in arcing time for each configuration were compared. Flow analysis can predict the switch flow distribution, and a comparative review of the flow path configurations of various methods is possible.

Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation (차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰)

  • Kim, Eun-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.500-505
    • /
    • 2009
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological (MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

  • PDF

SDRE controller considering Multi Observer applied to nonlinear IPMC model

  • Bernat, Jakub;Kolota, Jakub;Stepien, Slawomir
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Ionic Polymer Metal Composite (IPMC) is an electroactive polymer (EAP) and a promising candidate actuator for various potential applications mainly due to its flexible, low voltage/power requirements, small and compact design, and lack of moving parts. Although widely used in industry, this material requires accurate numerical models and knowledge of optimal control methods. This paper presents State-Dependent Riccati Equation (SDRE) approach as one of rapidly emerging methodologies for designing nonlinear controllers. Additionally, the present paper describes a novel method of Multi HGO Observer design. In the proposed design, the calculated position of the IPMC strip accurately tracks the target position, which is illustrated by the experiments. Numerical results and comparison with experimental data are presented and the effectiveness of the proposed control strategy is verified in experiments.

Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation (차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰)

  • Kim, Eun-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological(MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

Relation between Composition and Properties of $Na_2O-Al_2O_3-SiO_2$Glasses Determined from Experimental Design (실험계획법에 의한 $Na_2O-Al_2O_3-SiO_2$계 유리의 조성과 물성관계)

  • 강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1022-1034
    • /
    • 1999
  • A relation between composition and properties of Na2O-Al2O3-SiO2 glasses was investigated with application of the extreme vertical design. Properties investigated in this study include glass transition temperature density refractive index thermal expansion electrical conductivity bending strength and hardness, Most of the quadratic models fitted on property data were statistically significant. The properties estimated from the fitted equation agreed well with the measured properties. The estimated properties were compared with those reported by other investigators. Additional composition except for those of extreme vertices were needed to yield a slightly better result for the simple system such as a temary system. In addition an optimal composition on each property could be calculated by using optimization technique on result obtained from the fitted quadratic models.

  • PDF

The Development of Transmission and P.T.O on Work Vehicle with Multi-Function for Agriculture (농업용 다기능 작업차 트랜스 밋션 및 P.T.O 개발 (I))

  • 김재열;한재호;곽이구;김항우;송찬일;김남재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.666-669
    • /
    • 2002
  • In this Research, we would like to perform optimal design by using theoretical equation and experimental equation for development of transmission and P.T.O on work vehicle with multi-function that is suited fruit cultures in my country. For the purpose of reducing development period about product and minimizing risk about design error, detail design and interference check are accomplished by FEM analysis and CAD software.

  • PDF

Finite Element Modeling for rubber grommet to reduce vibration refrigerator (냉장고 진동 저감을 위한 그로멧의 유한요소모델링)

  • Kook, Jung-Hwan;Thuy, Tran Ho Vinh;Kim, Jung-Seon;Wang, Se-Myung;Lee, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.947-950
    • /
    • 2007
  • In this study, vibration analysis of a refrigerator was carried out to reduce vibration by considering grommet. When the refrigerator machine room is modeled by finite element method, spring elements are added to constructions of the FEmodel for each component and update. To design the grommet of refrigerator, FEmodel must have vibration characteristics of each components such as baseplate, pipe and compressor it self. The modal analyses are conducted to validate suggested approach when the components of machine room are assembled together. And, in this study, optimal design of grommet is conducted to avoid the resonance at the operating frequency of refrigerator. The experimental and FEM result of suggested design showed good agreement and are presented here.

  • PDF

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF