• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.026 seconds

Experimental Analysis Using Taguchi Method on the Resonator in the Rotary Compressor for Air Conditioner (다구찌 법을 이용한 에어컨용 회전압축기 공명기에 관한 실험적 연구)

  • 이병찬;김진동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • This paper introduces the experimental analysis of the resonator in the rolling piston type compressor for air conditioner. The resonator located between cylinder and hearing is a major factor in the noise reduction of the rotary compressor. Several shapes for the resonator which can be built in the space limitations are derived. Then optimal resonator type for the noise reduction is determined by noise tests. 6 design parameters of the type are found and optimal level for each design factor is deduced from Taguchi method.

A Study of Performance Prediction for 4-stroke Gasoline Engine (4행정 가솔린 기관의 성능 예측에 관한 연구)

  • 김형섭;장형성
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.49-55
    • /
    • 1990
  • A comprehensive cycle simulation was developed to predict the performance of gasoline engine including intake and exhaust systems with variation of operating conditions and design factors. In this study, the gas exchange model, compression and expansion model, two-zone combustion model and heat transfer model were used. In order to confirm the feasibility of the simulation program, the calculated results were compared with experimental results. P-$\theta$ diagrams, I. M. E. P. and S. F. C by means of calculation showed acceptable quantitative agreement with the experimental data. Therefore, this program is particularly well adapted to indicating the direction of the optimal design and optimal operating conditions for gasoline engine.

  • PDF

Optimal Die Profile Design in Tube Drawing Process for Prevention of Material Fracture (파단방지를 위한 튜브인발공정 최적 금형형상 설계에 관한 연구)

  • Lee, Sang-Kon;Kim, Sang-Woo;Lee, Young-Seon;Lee, Jung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.78-84
    • /
    • 2006
  • The objective of this study is to design the optimal die profile that can prevent material fracture in the tube drawing process for automobile steering input shaft. First, the CDV(Critical Damage Value) of material is obtained by the compression test and FE-analysis. The occurrence of fracture is estimated by the FE-analysis considering the CDV. In order to achieve the objective of this study, optimization technique and FE-analysis are applied. FPS(Flexible Polyhedron Search) method, which is one of the non-gradient optimization techniques often used in engineering, is used to search optimal die profile. The drawing die profile is represented by Bezier-curve to generate all the possible die profile. Using FPS method and FE-analysis the optimal drawing die profile is determined. To verify tile effectiveness of the redesigned optimal die, the tube drawing experiment is performed. In the experimental result, it is possible to produce sound product without material fracture using the redesigned optimal die.

Approximate Optimization of the Power Transmission Drive Shaft Considering Strength Design Condition (강도 조건을 고려한 동력 전달 드라이브 샤프트의 근사최적설계)

  • Shao, Hailong;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.186-191
    • /
    • 2015
  • Presently, rapidly changing and unstable global economic environments demand engineers. Products should be designed to increase profits by lowering costs and provide distinguished performance compared with competitors. This study aims to optimize the design of the power-transmission drive shaft. The mass is reduced as an objective function, and the stress is constrained under a constant value. To reduce the number of experiments, CCD (central composite design) and D-Optimal are used for the experimental design. RSM (response surface methodology) is employed to construct a regression model for the objective functions and constraint function. In this problem, there is only one objective function for the mass. The other objective function gives 1; thus, NSGA-II is used.

Creating the Optimal Product Business Management System for Social and Enterprise Development

  • Liao, Shih-chung
    • Journal of Distribution Science
    • /
    • v.11 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • Purpose - This paper examines product design management, the current design focus of which has shifted to the need to produce innovation applications that can effectively respond to the market's consumption changes in a timely manner. Research design, data, methodology - This study discusses several methodologies that are widely used in experimental processes, such as fuzzy theory, multi-criteria decision-making theory, and managing decision making. The designers will better understand their customers by applying these methodologies. This study examines how the current trend in product innovation design observes customer needs, controls innovation, and stimulates design ability. Results - This paper takes innovative telephone design as an experimental case to investigate how to create a product using market-oriented and customized management concepts and creative design abilities. Conclusions - If accompanied by an innovative product value chain, a product can further the development of enterprise management, now the main element of every developed country's social and economic development.

Analysis and Design of a Pneumatic Vibration Isolation System: Part II. Simulation, Experimental Verification and Design Optimization (공압 제진 시스템의 해석과 설계: II. 시뮬레이션, 실험과 설계 최적화)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.137-146
    • /
    • 2004
  • This is the second of two companion papers concerned with the analysis and design of a pneumatic vibration isolation system. The properties of the system are clarified by observation of the transmissibility surface calculated by the models and algorithm developed in the first paper of this research. It Is shown that the nonlinear model proposed in this research is more closer to experimental results than the linear model that have been used in previous studies. The design optimization of the major design variables that affect the performance of the system is achieved by using the condition for attenuation, disturbance rejection and maximum damping in resonance peak. The design space search method is adopted for the optimization of the orifice area. The models, transmissibility calculation algorithms and design optimization techniques developed in this research are shown to be greatly helpful to the optimal design of the pneumatic vibration isolation system by experiment.

RS-based method for estimating statistical moments and its application to reliability analysis (반응표면을 활용한 통계적 모멘트 추정 방법과 신뢰도해석에 적용)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.852-857
    • /
    • 2004
  • A new and efficient method for estimating the statistical moments of a system performance function has been developed. The method consists of two steps: (1) An approximate response surface is generated by a quadratic regression model, and (2) the statistical moments of the regression model are then calculated by experimental design techniques proposed by Seo and $Kwak^{(4)}$. In this approach, the size of experimental region affects the accuracy of the statistical moments. Therefore, the region size should be selected suitably. The D-optimal design and the central composite design are adopted over the selected experimental region for the regression model. Finally, the Pearson system is adopted to decide the distribution type of the system performance function and to analyze structural reliability.

  • PDF

A Study on Friction Characteristics for Motorcycle Disk Using Taguchi Experimental Design (다꾸지 기법에 의한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구)

  • Juen, H.Y.;Ryu, M.R.;Lee, S.J.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • The effect of manufacturing parameters on wear and improve cooling of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the wear and improve cooling factor such as applied load, sliding speed, frictional time and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factor. In this study, the wear and cooling characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle disk break system employing Taguchi robust experimental design. From this study, the result was shown that vents have an effect on convection area improving more cooling ability and reduced wear of the disk.

  • PDF

Synthesis and Characterization of Alkyl Methacrylate-based Microgels by Experimental Design Method

  • Lee, Young-Keun;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1493-1498
    • /
    • 2007
  • In this work, alkyl methacrylate-based microgels were synthesized by an experimental design method, and their sebum absorption characteristics were investigated. The results of fractional factorial experimentation indicated that the cross-linking agent content, solvent content, and stirring speed were the main parameters in the synthesis of the microgels. The suitable synthesis conditions were determined by the response surface design method. Through a study of the monomer and solvent effects, it was confirmed that the microgel shows the highest sebum absorption ratio when t-butyl methacrylate is used as a monomer or when acetone is used as a solvent. The optimal microgel synthesis conditions for cosmetic application were determined, and the resulting microgel had a mean particle size of 4.7 μm and a sebum absorption ratio of 435%.

A Study on Simulation of an Water Cooling Intercooler for a Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 인터쿨러 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.43-49
    • /
    • 2014
  • This study was carried out to improve the design of an intercooler for a small marine diesel engine. Diesel engines for small marine ships have mainly been developed by changing the structure of the vehicle engine. Sea water was most commonly used in the intercooler of small marine diesel engines to cool the hot air compressed by the turbocharger. In this study, the intercooler is modeled and simulated using STAR-CCM+ in order to find optimal data for the design of an intercooler. In the results, the temperature differences between the data from a numerical analysis and experimental data were $0.38^{\circ}C$ in the hot air outlet and $3.63^{\circ}C$ in the cooling water outlet. Therefore, it was confirmed that both analysis and experimental results need to be considered when designing an intercooler. A closer degree of similarity in the two datasets can improve the confidence in the design of these intercoolers.