• 제목/요약/키워드: optimal dimension

검색결과 347건 처리시간 0.027초

Simulated Annealing 알고리즘을 이용한 방음벽의 최적 설계 (Optimal Design of Noise Barriers Using Simulated Annealing Algorithm)

  • 김병희;김진형;최태묵;박일권;조대승
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.619-625
    • /
    • 2003
  • A successful design approach for noise barriers should be multidisciplinary because noise reduction goals influence both acoustical and non-acoustical considerations, such as maintenance, safety, physical construction, cost, and visual impact. These various barrier design options are closely related with barrier dimensions. In this study, we have proposed an optimal design method of noise barriers using simulated annealing algorithm, providing a harrier having the smallest dimension and achieving the specified noise reduction at a receiver region exposed to the noise due to Industry and infrastructure, to help a successful barrier design.

단순보강링을 갖는 압출 금형의 치수 최적설계 (Optimal Design of Dimension of Extrusion Die with Single Stress Ring)

  • 안성찬;임용택
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.363-370
    • /
    • 2002
  • In this study, an optimal design technique was investigated for determining appropriate dimensions of components of the die set used in the extrusion process. For this, an axi-symmetric elastic finite element program for the analysis of deformation of the shrink fitted die set was developed with the Lagrange multiplier method to implement the constraint condition of shrink fit of stress ring. By coupling the rigid-viscoplastic analysis of extrusion process by CAMPform and elastic analysis of the die set, the optimization study was made by employing optimization program DOT. Considering the various assembly conditions, optimal design was determined for a single stress ring case. It is construed that the proposed design method can be beneficial for improving the tool life of cold extrusion die set at practice.

Optimal Filtering for Linear Discrete-Time Systems with Single Delayed Measurement

  • Zhao, Hong-Guo;Zhang, Huan-Shui;Zhang, Cheng-Hui;Song, Xin-Min
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.378-385
    • /
    • 2008
  • This paper aims to present a polynomial approach to the steady-state optimal filtering for delayed systems. The design of the steady-state filter involves solving one polynomial equation and one spectral factorization. The key problem in this paper is the derivation of spectral factorization for systems with delayed measurement, which is more difficult than the standard systems without delays. To get the spectral factorization, we apply the reorganized innovation approach. The calculation of spectral factorization comes down to two Riccati equations with the same dimension as the original systems.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

Simulated Annealing 알고리즘을 이용한 방음벽의 최적 설계 (Optimal Design of Noise Barrier Using Simulated Annealing Algorithm)

  • 김병희;김진형;조대승;박일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1020-1025
    • /
    • 2003
  • A successful design approach for noise barriers should be multidisciplinary because noise reduction goals influence both acoustical and non-acoustical considerations, such as maintenance, safety, physical construction, cost and visual impact These various barrier design options are closely related with barrier dimensions. In this study, we have proposed an optimal design method of noise barriers using simulated annealing algorithm, providing a barrier having the smallest dimension and achieving the specified noise reduction at a receiver region exposed to the industry and infrastructures, to help a successful barrier design.

  • PDF

프리스트레스트 콘크리트 박스 거더 교량의 단면최적화 (The Section Optimization of Prestressed Concrete Box Girder Bridges)

  • 노금래;김만철;박선규;이인원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

조립품을 위한 비선형 공차할당 (Nonlinear Tolerance Allocation for Assembly Components)

  • 김광수;최후곤
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

지중송전선로 병행지선 최적 설치 방안에 관한 연구 (A Study on Optimal Installation Method of Earth Continuity Conductor on Underground Power Cable Systems)

  • 정채균;강지원;윤종건;김양상
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1689-1694
    • /
    • 2009
  • In a previous paper, the characteristics of ECC (earth continuity conductor) have been analysed for reducing the level of induced sheath voltage considering the dimension and position of ECC, the spacing between ECC and three phase cables, and the use of two ECC conductors at the single point boned section of underground power cable system. From these results, the study conditions for optimal installation has been selected such as installation section, conductor size and etc. In this paper, 5 cases which are set by possible installation conditions are tested based on previous research results. Finally, the optimal installation method of ECC is selected on underground power cable systems.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

불확정성을 고려한 적층판 결합공정의 강건최적설계 (A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties)

  • 이우혁;박정진;최주호;이수용
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.113-120
    • /
    • 2007
  • Design optimization of layered plates bonding process is conducted by considering uncertainties in a manufacturing process, in order to reduce the crack failure arising due to the residual stress at the surface of the adherent which is caused by different thermal expansion coefficients. Robust optimization is peformed to minimize the mean as well as its variance of the residual stress, while constraining the distortion as well as the instantaneous maximum stress under the allowable reliability limits. In this optimization, the dimension reduction (DR) method is employed to quantify the reliability such as mean and variance of the layered plate bonding. It is expected that the DR method benefits the optimization from the perspectives of efficiency, accuracy, and simplicity. The obtained robust optimal solution is verified by the Monte Carlo simulation.