• Title/Summary/Keyword: optimal control theory

Search Result 423, Processing Time 0.031 seconds

On Design Intelligent Control System by Fussionf of Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전자 알고리즘 융합에 의한 지능형 제어 시스템)

  • Lee, Mal-Rye;Kim, Tae-Eun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.952-958
    • /
    • 1999
  • This paper presented the application of GAs as a means of finding optimal solutions over a parameter space in the controller design for a fuzzy control system. The performance can involve a weighted combination of various performance characteristics such as rise-time, settling-time, settling-time, overshoot. The results obtained here are compared with those for a traditional design obtained using the root-locus method. In contrast to traditional methods, the GA-based method does not require the usual mathematical processess or mathematical model of the system. In this paper, the Ga-based Fuzzy control system combining Fuzzy control theory with the GA, that is known to be very effective in the optimization problem, will be proposed The effectiveness of the proposed control system will be demonstrated by computer simulations using task tracking position system in stable and unstable linear systems. It is shown that the GA-based controller is better than the traditional controller used It stable and unstable linear systems.

  • PDF

A speed controller design for low speed marine diesel engine by the $\mu$-synthesis ($\mu$-설계법에 의한 저속 박용디젤기관의 속도제어기 설계)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.60-70
    • /
    • 1995
  • In the field of marine transportation the energy saving is one of the most important factors for profit. In order to reduce the fuel oil consumption the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of an engine and a propeller. The propeller has better efficiency as lower rotational speed. This situation led the engine manufacturers to design the engine that has lower speed, longer stroke and a small number of cylinders. Consequently the variation of rotational torque became larger than before because of the longer delay-time in the fuel oil injection process and an increased output per cylinder. As this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variation of the delay-time and the parameter pertubation. In this paper we consider the delay-time and the perturbation of engine parameters as the modeling uncetainties. Next we design the controller which has zero offset in steady state engine speed, based on the two-degree-of-freedom control theory and $\mu$-synthesis. Thd validity of the controller is investigated through the response simulation. We use a personal computer and an analog computer as the digital controller and the engine (plant) part respectively. And, we certify that the designed controller maintains its performance even though the engine parameters may vary.

  • PDF

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

A Clinical Trial to Assess the Efficacy of Acupuncture on Hot Flashes in Postmenopausal Women;Focusing on the comparison of the effects of Traditional Korean medical acupuncture (TKMA) and Minimal Acupuncture (MA)

  • Kim, Dong-Il;Roh, Jin-Ju;Choi, Min-Sun;Lee, Seung-Deok;Roh, Ju-Won;Yoon, Sang-Ho;Ahn, Hong-Yup;Oh, Dal-Seok;Choi, Sun-Mi
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.74-85
    • /
    • 2007
  • Objective : In this study we wanted to confirm if proper stimulation and de-Qi of traditional Korean medical acupuncture could increase hot flash relief efficacy. Design : A randomized controlled, single blind study. We used two modalities of acupuncture, one with optimal stimulation [Study group; Korean medical acupuncture (TKMA)] and one with minimal stimulation [Control group; Minimal acupuncture (MA)]. Same acupoints [PC6(內關), HT8(少府), HT7(神門), LI4(合谷), ST36(足三里), SP6(三陰交), Ren4(關元)] were used in both groups. Fifty-two patients were treated twice a week for 8 weeks, and follow up was done after 4 weeks from the last treatment. Patients were checked hot flash VAS (visual analog scale), frequency and duration every time they visited. Results : Hot flash relief efficacy by 100mm hot flash VAS was obvious in both groups. Hot flash VAS scores of study group were smaller than the scores of control group at the early stage (3rd, $4^{th}$ and $8^{th}$ visit), but there wasn't a remarkable difference between study and control group at the end of the trial. Besides, diminution of hot flash VAS was faster and more even in the study group than control group by visualization using 'Box plot'. We compared frequency and duration of hot flash, 100mm sweating, palpitation, sleep disturbance VAS, and Kupperman Index, MENQOL, Patient's global assessment score. Both groups showed definite decrease from the baseline, but the difference was not statistically significant. There wasn't any adverse event. Hot flash relief efficacy was kept in most patients after 4 weeks' follow-up. Conclusion : Acupoint combination by Traditional Korean medical theory is effective on hot flashes and hot flash relief efficacy was faster and more even in optimal stimulation than minimal stimulation.

  • PDF

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

Optimal State Feedback Control of Container Crane Using RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 최적 상태 피드백 제어)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Cho, Kwon-Hae;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.247-252
    • /
    • 2007
  • The container crane is one of the most important equipments at container terminal. If its working time in cycle could be reduced then container terminal efficiency and service level can be increased. So there are many i1forts to reduce working time of container cranes. It means how to design the controller with good performance which has small overshoot and swing motion of container crane. We, in this paper, present a state feedback controller based on LQ theory incorporating a RCGA which means real-coded genetic algorithm RCGA can search state feedback gains under given objective function. A set of simulation works are carried out in order to prove the control effectiveness of the proposed methods.

Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis (LMI 방법을 이용한 방사형 인공위성 제어로직 설계 및 강건성 분석)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.998-1007
    • /
    • 2015
  • The $H_{\infty}$ control theory using LMI method is applied to design an attitude controller of radial type satellite that has strongly coupled channels due to the large product of inertia. It is observed that the cross-over frequency of open-loop with $H_{\infty}$ controller is lower than that of open-loop without controller, which is not typical phenomenon in an optimal control design result: it is interpreted that due to a large product of inertia, there is certain limit in increasing agility of satellite by just tuning weighting function. ${\mu}$-analysis is performed to verify the stability and performance robustness with the assumption of +/-5% MOI variation. ${\mu}$-analysis result shows that the variation of principal MOI degrades the stability and performance robustness more than the variation of POI does.

A Period Assignment Algorithm for Real-Time System Design (실시간 시스템 설계를 위한 주기 할당 알고리즘)

  • Ryu, Min-Soo;Hong, Seong-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Digital controllers found in many industrial real-time systems consist of a number of interacting periodic tasks. To sustain the required control quality, these tasks possess the maximum activation periods as performance constraints. An essential step in developing a real-time system is thus to assign each of these tasks a constant period such that the maximum activation requirements are met while the system utilization is minimized [1]. Given a task graph design allowing producer/consumer relationships among tasks [2], resource demands of tasks, and range constraints on periods, the period assignment problem falls into a class of nonlinear optimization problems. This paper proposes a ploynomial time approximation algorithm which produces a solution whose utilization does not exceed twice the optimal utilization. Our experimental analysis shows that the proposed algorithm finds solutions which are very close to the optimal ones in most cases of practical interest.

  • PDF