DOI QR코드

DOI QR Code

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines Anhui University of Science and Technology) ;
  • Qing-Heng Gu (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines Anhui University of Science and Technology) ;
  • Meng Zhang (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines Anhui University of Science and Technology) ;
  • Cheng-Yang Jia (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines Anhui University of Science and Technology) ;
  • Bao-Liang Zhang (School of Architecture & Civil Engineering, Liaocheng University) ;
  • Jian-Hang Wang (Beijing Tiandi Huatai Mining Management Co., Ltd.)
  • Received : 2023.07.18
  • Accepted : 2024.02.07
  • Published : 2024.03.10

Abstract

This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

Keywords

Acknowledgement

This work was supported by the Natural Science Research Project of Anhui Educational Committee (2023AH051187), National Natural Science Foundation of China (52304198), Anhui Provincial Key Research and Development Project (2022m07020006), State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines (Henan Polytechnic University (No. SJF2208) and Anhui University Excellent Scientific Research and Innovation Team Project (2022AH010051).

References

  1. Alehossein, H. and Poulsen, B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min., 47(1), 30-41. https://doi.org/10.1016/j.ijrmms.2009.07.004.
  2. Bai, Q., Tu, S., Wang, F. and Zhang, C. (2017), "Field and numerical investigations of gateroad system failure induced by hard roofs in a longwall top coal caving face", Int. J. Coal Geol., 173, 176-199. https://doi.org/10.1016/j.coal.2017.02.015.
  3. Babanouri, N. and Sarfarazi, V. (2018), "Numerical analysis of a complex slope instability: Pseudo-wedge failure", Geomech. Eng., 15(1), 669-676. https://doi.org/10.12989/gae.2018.15.1.669.
  4. Brady, B. and Brown, E. (2006), Rock Mechanics for underground mining, Spring Ed., 1. Netherlands. https://doi.org/10.1016/j.coal.2017.02.015.
  5. Castelli, F., Grasso, S., Lentini, V. and Sammito, M.S.V. (2021), "Effects of soil-foundation-interaction on the seismic response of a cooling tower by 3D-FEM analysis", Geosci., 11(5), 200. https://doi.org/10.3390/geosciences11050200.
  6. Chen, B. and Shen, B. and Jiang, H. (2023), "Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures", J. Rock Mech. Geotech. Eng., English edition, 15(3), 15. https://doi.org/10.1016/j.jrmge.2022.04.006.
  7. Cheng, Z. and Yang, S., Li, L. and Zhang, L. (2019). "Support working resistance determined on top - coal caving face based on coal -rock combined body", Geomech. Eng., 19(3), 255-268. https://doi.org/10.12989/gae.2019.19.3.255.
  8. Cheng, Z. and Pan, W., Li, X. and Sun, W. (2019), "Numerical simulation on strata behaviours of TCCWF influenced by coal - rock combined body", Geomech. Eng., 19(3), 269-282. https://doi.org/10.12989/gae.2019.19.3.269.
  9. Coggan, J., Gao, F.Q., Stead, D. and Elmo, D. (2012), "Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability", Int. J. Coal Geol., 90-91, 100-109. https://doi.org/10.1016/j.coal.2011.11.003.
  10. Dychkovskyi, R., Shavarskyi, I., Saik, P., Lozynskyi, V., Falshtynskyi, V. and Cabana, E. (2020), "Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls", Dnipro Univ. Tech., 14, 85-94. https://doi.org/10.33271/mining14.02.085.
  11. Genis, M. and Akcin, H., Aydan, O. and Bacak, G. (2018), "Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey", Geomech. Eng., 16(2), 177-185. https://doi.org/10.12989/gae.2018.16.2.177.
  12. Guo, W.B., Tan, Y. and Bai, E.H. (2017), "Top coal caving mining technique in thick coal seam beneath the earth dam", Int. J. Min. Sci. Tech., 27(1), 165-170. https://doi.org/10.1016/j.ijmst.2016.11.005.
  13. Ibishi, G., Genis, M. and Yavuz, M. (2022), "Post-pillars design for safe exploitation at Trepca hard rock mine (Kosovo) based on numerical modeling" Geomech. Eng., 28(5), 463-475. https://doi.org/10.12989/gae.2022.28.5.463.
  14. Islam, M.R. and Shinjo, R. (2009), "Numerical simulation of stress distributions and displacements around an entry roadway with igneous intrusion and potential sources of seam gas emission of the Barapukuria coal mine, NW Bangladesh", Int. J. Coal Geol., 78(4), 249-262. https://doi.org/10.1016/j.coal.2009.03.001.
  15. Jaouhar, E., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Eng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.
  16. Ji, S.T.,He, H. and Karlovsek, J. (2021), "Application of superposition method to study the mechanical behaviour of overlying strata in longwall mining", Int. J. Rock Mech. Min., 146. https://doi.org/10.1016/j.ijrmms.2021.104874.
  17. Ji, S., Wang, Z. and Karlovsek, J. (2022), "Analytical study of subcritical crack growth under modeI loading to estimate the roof durability in underground excavation", Int. J. Min. Sci. Tech., 32(2), 11. https://doi.org/10.1016/j.ijmst.2021.08.006
  18. Khanal, M., Adhikary, D. and Balusu, R. (2011), "Evaluation of mine scale longwall top coal caving parameters using continuum analysis", Int. J. Min. Sci. Tech., 21(6), 787-796. (in Chinese) https://doi.org/10.1016/j.mstc.2011.06.027.
  19. Le, T.D., Mitra, R., Oh, J. and Hebblewhite, B. (2017), "A review of cavability evaluation in longwall top coal caving", Int. J. Min. Sci. .Tech., 27(6), 907-915. https://doi.org/10.1016/j.ijmst.2017.06.021.
  20. Le, T.D., Zhang, C.G., Oh, J. and Mitra, R. (2019), "A new cavability assessment for Longwall Top Coal Caving from discontinuum numerical analysis", Int. J. Rock Mech. Min., 115, 11-20. https://doi.org/10.1016/j.ijrmms.2019.01.006.
  21. Li, C. and Xie, J., He, Z., Deng, G. and Yang, B. (2020), "Case study of the mining-induced stress and fracture network evolution in longwall top coal caving", Geomech. Eng., 22(2), 133-142. https://doi.org/10.12989/gae.2020.22.2.133.
  22. Liu, F. and Silva, J., Yang, S., Lv, H. and Zhang, J. (2019), "Influence of explosives distribution on coal fragmentation in top - coal caving mining", Geomech. Eng., 18(2), 111-119. https://doi.org/10.12989/gae.2019.18.2.111.
  23. Majdi, A., Hassani, F.P. and Nasiri, M.Y. (2012), "Prediction of the height of destressed zone above the mined panel roof in longwall coal mining", Int. J. Coal Geol., 98, 62-72. https://doi.org/10.1016/j.coal.2012.04.005.
  24. Malashkevych, D., Petlovanyi, M., Zubko, S. and Sai, K. (2022), "Research into the coal quality with a new selective mining technology of the waste rock accumulation in the mined-out area", Min. Miner. Deposits, 16(4), 103-114. https://doi.org/10.33271/mining 16.04.103.
  25. Oh, J. and Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.
  26. Rajwa, S., Janoszek, T. and Prusek, S. (2019), "Influence of canopy ratio of powered roof support on longwall working stability - A case study", Int. J. Min. Sci. Tech., 29(4), 591-598. https://doi.org/10.1016/j.ijmst.2019.06.002.
  27. Smolinski, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V. and Sai, K. (2022), "Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face", Energies, 15(24), 9522. https://doi.org/10.3390/en15249522.
  28. Song, Z.Q. (1988), Practical Mine Pressure Control, China University of Mining and Technology Press, Xuzhou, Jiangsu, China.
  29. Tan, Y.L. (2021), Mine Pressure and Strata Control, Emergency Management Press, Beijing, China.
  30. Vakili, A. and Hebblewhite, B.K. (2010), "A new cavability assessment criterion for Longwall Top Coal Caving", Int. J. Rock Mech. Min., 47(8), 1317-1329. https://doi.org/10.1016/j.ijrmms.2010.08.010.
  31. Vu, T.T. (2022), "Solutions to prevent face spall and roof falling in fully mechanized longwall at underground mines, Vietnam", Min. Miner. Deposits, 16(1), 127-134. https://doi.org/10.33271/mining16.01.127.
  32. Wang, J.A., Yang, L. and Li, F. (2020), "Force chains in top coal caving mining", Int. J. Rock Mech. Min., 127, 104218. https://doi.org/10.1016/j.ijrmms.2020.104218.
  33. Wang, Q. and Su, X., Jin, Y., Sun, C., Yu, S., Zhao, W. and Feng, Y. (2023). "Experimental investigation of reservoir fluid interlayer crossflow through fracture during the drainage stage of coal measure gas well", Nat. Resour. Res., 16. https://doi.org/10.1007/s11053-023-10187-3
  34. Wang, Y.J., Wang, Q., Tian, X.C., Wang, H. and Yang, J. (2022), "Stress and deformation evolution characteristics of gob-side entry retained by roof cutting and pressure relief", Tunn. Undergr. Sp. Tech., 123, 104419. https://doi.org/10.1016/j.tust.2022.104419.
  35. Xie, H.P, Chen, Z.H. and Wang, J.C. (1999), "Three-dimensional numerical analysis of deformation and failure during top coal caving", Int. J. Rock Mech. Min. Geomech. Abstracts, 36(5), 651-658. https://doi.org/10.1016/S0148-9062(99)00027-3.
  36. Yasitli, N.E. and Unver, B. (2005), "3D numerical modeling of longwall mining with top-coal caving", Int. J. Rock Mech. Min., 42(2), 219-235. https://doi.org/10.1016/j.ijrmms.2004.08.007