• Title/Summary/Keyword: optimal control theory

Search Result 423, Processing Time 0.029 seconds

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

Intelligent algorithm and optimum design of fuzzy theory for structural control

  • Chen, Z.Y.;Wang, Ruei-Yuan;Meng, Yahui;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.537-544
    • /
    • 2022
  • The optimal design of structural composite materials is a research topic that attracts the attention of lots researchers. For many more thirty years, there has been increasing interest in the applications in all kinds of topics, which means taking advantage of fuzzy set theory, fuzzy analysis, and fuzzy control for designing high-performance and efficient structural systems is a fundamental concern for engineers, and many applications require the use of a systems approach to combine structural and active control systems. Therefore, an intelligent method can be designed based on the mitigation method, and by establishing the stable of the closed-loop fuzzy mitigation system, the behavior of the closed-loop fuzzy mitigation system can be accurately predicted. In this article, the intelligent algorithm and optimum design of fuzzy theory for structural control has been provided and demonstrated effective and efficient in practical engineering issues.

State estimation of stochastic bilinear system (추계 이선형 시스템의 상태추정)

  • 황춘식
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.728-733
    • /
    • 1981
  • Most of real world systems are highly non-linear. But due to difficulties in analyzing and dealing with it, only the linear system theory is well estabilished. Bilinear system where state and control are linear but not linear jointly is introduced. Here shows that optimal state estimation of stochastic bilinear system requirs infinite dimensional filter, thus onesub-optimal estimator for this system is suggested.

  • PDF

Anti-Sway Control of a Jib Crane Using Time Optimal Control (시간최적제어를 이용한 지비크레인의 흔들림제어)

  • KANG MIN-WOO;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.87-94
    • /
    • 2005
  • This paper investigates the constant-level luffing and time optimal control of jib cranes. The constant-level luffing, which is the sustainment of the load at a constant height during luffing, is achieved by analyzing the kinematic relationship between the angular displacement of a boom and that of the main hoist motor of a jib crane. Under the assumption that the main body of the crane does not rotate, the equations of motion of the boom are derived using Newton's Second Law. The dynamic equations for the crane system are highly nonlinear; therefore, they are linearized under the small angular motion of the load to apply linear control theory. This paper investigates the time optimal control from the perspective of no-sway at a target point. A stepped velocity pattern is used to design the moving path of the jib crane. Simulation results demonstrate the effectiveness of the time optimal control, in terms of anti-sway motion of the load, while luffing the crane.

HYBRID ON-OFF CONTROLS FOR AN HIV MODEL BASED ON A LINEAR CONTROL PROBLEM

  • Jang, Tae Soo;Kim, Jungeun;Kwon, Hee-Dae;Lee, Jeehyun
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.469-487
    • /
    • 2015
  • We consider a model of HIV infection with various compartments, including target cells, infected cells, viral loads and immune effector cells, to describe HIV type 1 infection. We show that the proposed model has one uninfected steady state and several infected steady states and investigate their local stability by using a Jacobian matrix method. We obtain equations for adjoint variables and characterize an optimal control by applying Pontryagin's Maximum Principle in a linear control problem. In addition, we apply techniques and ideas from linear optimal control theory in conjunction with a direct search approach to derive on-off HIV therapy strategies. The results of numerical simulations indicate that hybrid on-off therapy protocols can move the model system to a "healthy" steady state in which the immune response is dominant in controlling HIV after the discontinuation of the therapy.

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

A Study on Dong Scheduling Using HIV Dynamics and Optimal Control (HIV 동역학과 최적 제어를 이용한 약물 치료에 관한 고찰)

  • 허영희;고지현;김진영;남상원;심형보;정정주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.475-486
    • /
    • 2004
  • The interaction of HIV and human immune system was studied in the perspective of dynamics. We summarized the recent researches on drug scheduling using optimal control theory for HIV treatment. The drug treatment to make immune system to work properly is investigated based on mathematical models including memory CTLp. In the simulation results, it was verified that stopping medication after a certain period of treatment can lead a patient to be cured naturally by one s immune system. Also, we summarized and categorized the advantages and disadvantages of each HIV drug scheduling method. In conclusion, model-based predictive control is more efficient for making decision of drug dose than other methods, when there exist uncertainties on model parameters or state variables.

Perception on Optimal Diet, Diet Problems and Factors Related to Optimal Diet Among Young Adult Women Using Focus Group Interviews - Based on Social Cognitive Theory - (포커스 그룹 인터뷰를 이용한 젊은 성인 여성의 식생활 실태 및 관련 요인 - 사회인지론에 근거하여 -)

  • Kim, Hye Jin;Lee, A Reum;Kim, Kyung Won
    • Korean Journal of Community Nutrition
    • /
    • v.21 no.4
    • /
    • pp.332-343
    • /
    • 2016
  • Objectives: Study purpose was to investigate perception on diet, diet problems and related factors among young adult women using focus group interviews (FGI) based on the Social Cognitive Theory (SCT). Methods: Eight groups of FGI were conducted with 47 female undergraduate or graduate students. Guide for FGI included questions regarding perception on optimal diet, diet problems and cognitive, behavioral, and environmental factors of SCT. FGI were video, audio-taped, transcribed and analyzed by themes and sub-themes. Results: Subjects showed irregular eating habits (skipping breakfast, irregular meal time) and selection of unhealthy foods as the main diet problems. Regarding cognitive factors related to optimal diet, subjects mentioned positive outcome expectations (e.g., health promotion, skin health, improvement in eating habits, etc.) and negative outcome expectations (e.g., annoying, hungry, expensive, taste). Factors that promoted optimal diet were mainly received from information from mobile or internet and access to menu or recipes. Factors that prevented optimal diet included influence from friends, lack of time and cooking skills. Behavioral factors for optimal diet included behavioral capability regarding snacks, healthy eating and smart food selection. Subjects mentioned mass media (mobile, internet, TV) as the influential physical environment, and significant others (parents, friends, grandparents) as the influential social environment in optimal diet. For education topics, subjects wanted to learn about healthy meals, basic nutrition, disease and nutrition, and weight control. They wanted to learn those aspects by using mobile or internet, lectures (cooking classes), campaign and events. Conclusions: Study results might be used for planning education regarding optimal diet for young adult women. Education programs need to focus on increasing positive outcome expectations (e.g., health) and behavioral capability for healthy eating and food selection, reducing negative outcome expectations (e.g., cost, taste) and barriers, making supportive environments for optimal diet, and incorporating topics and methods found in this study.

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.