• Title/Summary/Keyword: optimal conrol

Search Result 3, Processing Time 0.017 seconds

A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode (슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 이민철;진상영;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.

PREVIEW CONTROL FOR EDGE-FOLLOWING USING ROBOT FORCE CONTROL

  • Yong, Boojoong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.100-111
    • /
    • 1999
  • This paper resents a discrete-time model of an edge-following with accommodation force control. Since an irregular workpiece shape causes disturbances to the system while following an edge, the use of preview control is proposed to improve the system performance. The preview control employs future information of the workpiece contour shape, and it can be developed by LQ-optimal control principles. This study provides a general method how to utilize the local future information obtained by the finite preview to minimize an optimality criterion evaluated over a problem duration. The force controller is designed based on the preview control scheme, and then implemented on a VME-based computer. Experimental results using an industrial robot show that the preview control system achieves faster tracking speed and better force regulation than the conventional nonpreview control system.

  • PDF