• 제목/요약/키워드: optimal compromise solution

검색결과 23건 처리시간 0.029초

SOLVING BI-OBJECTIVE TRANSPORTATION PROBLEM UNDER NEUTROSOPHIC ENVIRONMENT

  • S. SANDHIYA;ANURADHA DHANAPAL
    • Journal of applied mathematics & informatics
    • /
    • 제42권4호
    • /
    • pp.831-854
    • /
    • 2024
  • The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.

Compromise Programming을 이용한 물류센터 설계에 관한 연구 (A Study for Design of Distribution Center using Compromise Programming)

  • 허병완;이홍철
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.43-54
    • /
    • 2005
  • For the effective design of automated distribution center composed of Automated Storage/Retrieval System, Automated Guided Vehicle System, and Conveyor System, we proposed an analysis method to determining. design and control parameters with multiple performance objectives using Compromise Programming, which can resolve the dilemma of conflicting objectives. The Evolution Strategy generates the optimal solutions for each objectives. The Analytic Hierarchy Process selects the best solution among the alternatives generated from Evolution Strategy. The Regression Analysis formulates the objective functions for each objectives. By reducing deviations between goal values and target values generated from Analytic Hierarchy Process, Compromise Programming determines design and control parameters by compromising the multiple objectives formulated using Regression Analysis. When the parameters of system are changed, this proposed analysis method has a benefit of reducing costs and time without repeating whole simulation run.

  • PDF

피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem)

  • 백석흠;조석수;장득열;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

최소 거리척도를 이용한 대화형 다기준 그룹 의사결정 (An Interactive Multi-criteria Group Decision Making with the Minimum Distance Measure)

  • 조남웅;김재희;김승권
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.42-50
    • /
    • 2006
  • The multi-criteria group decision making (MCGDM) problem is to determine the best compromise solution in a set of competing alternatives that are evaluated under conflicting criteria by decision maker (DM)s. In this paper, we propose a mixed-integer programming (MIP) model to solve MCGDM. The existing method based on minimizing a distance measure such as Median Approach can not guarantee the best compromise solution because the element of median point vector is defined with respect to each criteria separately. However, by considering all criteria simultaneously, we generate median point that is better for locating the best compromise solution. We also utilize the concept of spatial dispersion index (SDI) to produce a threshold value, which is used as a guideline to choose either the Utopian Approach or the Median Approach. And we suggest using CBITP (Convex hull of individual maxima Based Interactive Tchebycheff Procedure) to provide DMs with various Pareto-optimal solutions so that DMs have broad range of selection.

피로수명예측을 위한 반응표면근사화와 순위선호정보를 가진 다기준최적설계에의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information)

  • 백석흠;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.114-126
    • /
    • 2009
  • In this paper, a versatile multi-criteria optimization concept for fatigue life prediction is introduced. Multi-criteria decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

FUZZY GOAL PROGRAMMING FOR MULTIOBJECTIVE TRANSPORTATION PROBLEMS

  • Zangiabadi, M.;Maleki, H.R.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.449-460
    • /
    • 2007
  • Several fuzzy approaches can be considered for solving multi-objective transportation problem. This paper presents a fuzzy goal programming approach to determine an optimal compromise solution for the multiobjective transportation problem. We assume that each objective function has a fuzzy goal. Also we assign a special type of nonlinear (hyperbolic) membership function to each objective function to describe each fuzzy goal. The approach focuses on minimizing the negative deviation variables from 1 to obtain a compromise solution of the multiobjective transportation problem. We show that the proposed method and the fuzzy programming method are equivalent. In addition, the proposed approach can be applied to solve other multiobjective mathematical programming problems. A numerical example is given to illustrate the efficiency of the proposed approach.

다목적 전력 시스템 최적운용을 위한 S 모델 Automata의 적용 연구 (A study on the application of S model automata for multiple objective optimal operation of Power systems)

  • 이용선;이병하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1279-1281
    • /
    • 1999
  • The learning automaton is an automaton to update systematically the strategy for enhancing the performance in response to the output results, and several schemes of learning automata have been presented. In this paper, S-model learning automata are applied to achieving a best compromise solution between an optimal solution for economic operation and an optimal solution for stable operation of the power system under the circumstance that the loads vary randomly. It is shown that learning automata are applied satisfactorily to the multiobjective optimization problem for obtaining the best tradeoff among the conflicting economy and stability objectives of power systems.

  • PDF

다목적을 고려한 전력 시스템의 최적운용을 위한 S 모델 Automata의 적용 연구 (A Study on the Application of S Model Automata for Multiple Objective Optimal Operation of Power Systems)

  • 이병하;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권4호
    • /
    • pp.185-194
    • /
    • 2000
  • The learning automaton is an automaton to update systematically the strategy for enhancing the performance in response to the output results, and several schemes of learning automata have been presented. In this paper, S-model learning automata are applied in order to achieve the best compromise solution between an optimal solution for economic operation and an optimal solution for stable operation of the power system under the circumstance that the loads vary randomly. It is shown that learning automata are applied satisfactorily to the multiobjective optimization problem for obtaining the best tradeoff among the conflicting economy and stability objectives of power systems.

  • PDF

Reliable monitoring of embankment dams with optimal selection of geotechnical instruments

  • Masoumi, Isa;Ahangari, Kaveh;Noorzad, Ali
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.85-105
    • /
    • 2017
  • Monitoring is the most important part of the construction and operation of the embankment dams. Applied instruments in these dams should be determined based on dam requirements and specifications. Instruments selection considered as one of the most important steps of monitoring plan. Competent instruments selection for dams is very important, as inappropriate selection causes irreparable loss in critical condition. Lack of a systematic method for determining instruments has been considered as a problem for creating an efficient selection. Nowadays, decision making methods have been used widely in different sciences for optimal determination and selection. In this study, the Multi-Attribute Decision Making is applied by considering 9 criteria and categorisation of 8 groups of geotechnical instruments. Therefore, the Analytic Hierarchy Process and Multi-Criteria Optimisation and Compromise Solution methods are employed in order to determine the attributes' importance weights and to prioritise of instruments for embankment dams, respectively. This framework was applied for a rock fill with clay core dam. The results indicated that group decision making optimizes the selection and prioritisation of monitoring instruments for embankment dams, and selected instruments are reliable based on the dam specifications.

Multi-Item Inventory Problems Revisited Using Genetic Algorithm

  • Das, Prasun
    • Management Science and Financial Engineering
    • /
    • 제13권2호
    • /
    • pp.29-46
    • /
    • 2007
  • This paper makes an attempt to compare the two important methods for finding solutions of multi-item inventory problem with more than one conflicting objectives. Panda et al.[9] discusses a distance-based method to find the best possible compromise solution with variation of priority under the given weight structure. In this paper, the problem in [9] is revisited through the Pareto-optimal front of genetic algorithm with the help of a situation of retail stocking of FMCG business. The advantages of using the solutions from the perspective of the decision maker obtained through multi-objective optimization are highlighted in terms of population search, weighted goals and priority structure, cost, set of compromise solutions along with prevention of stock-out situation.