• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.064 seconds

Correlation between Casagrande Test and Fall Cone Test Methods and their Applicability in Ground Improvement (카사그란데방법과 원추관입시험방법의 상관관계와 지반개량제의 적용성에 대한 연구)

  • Ko, Kun-Woo;Yeo, Dong-Jun;Kim, Kyung-Min;Lee, Byung-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.5-17
    • /
    • 2023
  • In this study, a classification and uniaxial compression test of soil was conducted on 15 collapsed sites to use ground improvement with excellent protection effect owing to the increase of localized heavy rain in Korea. The Casagrande method and fall cone test were performed on the field soil to derive an expression for comparing liquid limit and plastic limit values, soil classification, and correlation between each other. By deriving the optimal mixing ratio of the ground improvement agent using uniaxial compressive strength for each soil classification, the classification of the fine-grained soil was not clear owing to the proficiency difference and test error. However, after classifying using the fall cone test, it was possible to suggest a clear optimal mixing ratio.

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

Environmental Sound Classification for Selective Noise Cancellation in Industrial Sites (산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술)

  • Choi, Hyunkook;Kim, Sangmin;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.845-853
    • /
    • 2020
  • In this paper, we propose a method for classifying environmental sound for selective noise cancellation in industrial sites. Noise in industrial sites causes hearing loss in workers, and researches on noise cancellation have been widely conducted. However, the conventional methods have a problem of blocking all sounds and cannot provide the optimal operation per noise type because of common cancellation method for all types of noise. In order to perform selective noise cancellation, therefore, we propose a method for environmental sound classification based on deep learning. The proposed method uses new sets of acoustic features consisting of temporal and statistical properties of Mel-spectrogram, which can overcome the limitation of Mel-spectrogram features, and uses convolutional neural network as a classifier. We apply the proposed method to five-class sound classification with three noise classes and two non-noise classes. We confirm that the proposed method provides improved classification accuracy by 6.6% point, compared with that using conventional Mel-spectrogram features.

Determining the Optimal Number of Signal Clusters Using Iterative HMM Classification

  • Ernest, Duker Junior;Kim, Yoon Joong
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2018
  • In this study, we propose an iterative clustering algorithm that automatically clusters a set of voice signal data without a label into an optimal number of clusters and generates hmm model for each cluster. In the clustering process, the likelihood calculations of the clusters are performed using iterative hmm learning and testing while varying the number of clusters for given data, and the maximum likelihood estimation method is used to determine the optimal number of clusters. We tested the effectiveness of this clustering algorithm on a small-vocabulary digit clustering task by mapping the unsupervised decoded output of the optimal cluster to the ground-truth transcription, we found out that they were highly correlated.

The Hybrid Systems for Credit Rating

  • Goo, Han-In;Jo, Hong-Kyuo;Shin, Kyung-Shik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.163-173
    • /
    • 1997
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, it is hard to tell a priori which of these techniques will be the most effective to solve a specific problem. It has been suggested that the better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the predictive performance. This paper proposes the post-model integration method, which tries to find the best combination of the results provided by individual techniques. To get the optimal or near optimal combination of different prediction techniques, Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an object function subject to numerous hard and soft constraints. This study applies three individual classification techniques (Discriminant analysis, Logit model and Neural Networks) as base models for the corporate failure prediction. The results of composite predictions are compared with the individual models. Preliminary results suggests that the use of integrated methods improve the performance of business classification.

  • PDF

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

A Statistical Perspective of Neural Networks for Imbalanced Data Problems

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.7 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified through simulations on a thyroid data set.

Development of a potential evaluation method for urban expansion using GIS and RS technologies (GIS와 RS를 이용한 도시확산 포텐셜 평가기법의 개발)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.41-51
    • /
    • 2004
  • This study aims to develop a potential evaluation method for urban spatial expansion using remote sensing (RS) and geographic information system (GIS). A multi-criteria evaluation method with several criteria and their weighting values was introduced to evaluate the score and quantification of the potential surface around the existing cities. The six criteria with one geographic factor, slope, and five accessibility factors, time distance from center of the city, national road, interchange of expressway, a big city, and station, were defined for the potential. RS techniques were applied for classification of the actual urban expansion maps between two periods, and GIS functions were used for score of accessibility criteria with a distance decay function from geographic, road and several point maps, which was developed in this study. The new methodology was applied to a test area, Suwon, between 1986 and 1996. In order to optimize the six weighting values, this study made new findings to search the optimal combination of the weighting values from new methodology, weighted scenario method for intensity order (WSM), combined with intensity order and AHP method, including a trial and error method for sensitivity analysis to make the intensity order. The optimal combination of the weighting values by the new method generated the optimal potential surface, considering spatial trend of urban expansion in the test area.

Optimal Value Detection of Irregular RR Interval for Atrial Fibrillation Classification based on Linear Analysis (선형분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출)

  • Cho, Ik-Sung;Jeong, Jong-Hyeog;Cho, Young Chang;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2551-2561
    • /
    • 2014
  • Several algorithms have been developed to detect AFIB(Atrial Fibrillation) which either rely on the linear and frequency analysis. But they are more complex than time time domain algorithm and difficult to get the consistent rule of irregular RR interval rhythm. In this study, we propose algorithm for optimal value detection of irregular RR interval for AFIB classification based on linear analysis. For this purpose, we detected R wave, RR interval, from noise-free ECG signal through the preprocessing process and subtractive operation method. Also, we set scope for segment length and detected optimal value and then classified AFIB in realtime through liniar analysis such as absolute deviation and absolute difference. The performance of proposed algorithm for AFIB classification is evaluated by using MIT-BIH arrhythmia and AFIB database. The optimal value indicate ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ in AFIB classification.