• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.031 seconds

A Dual Filter-based Channel Selection for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 이중 filter-기반의 채널 선택)

  • Lee, David;Lee, Hee Jae;Park, Snag-Hoon;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.887-892
    • /
    • 2017
  • Brain-computer interface (BCI) is a technology that controls computer and transmits intention by measuring and analyzing electroencephalogram (EEG) signals generated in multi-channel during mental work. At this time, optimal EEG channel selection is necessary not only for convenience and speed of BCI but also for improvement in accuracy. The optimal channel is obtained by removing duplicate(redundant) channels or noisy channels. This paper propose a dual filter-based channel selection method to select the optimal EEG channel. The proposed method first removes duplicate channels using Spearman's rank correlation to eliminate redundancy between channels. Then, using F score, the relevance between channels and class labels is obtained, and only the top m channels are then selected. The proposed method can provide good classification accuracy by using features obtained from channels that are associated with class labels and have no duplicates. The proposed channel selection method greatly reduces the number of channels required while improving the average classification accuracy.

Design of the Optimal Fuzzy Prediction Systems using RCGKA (RCGKA를 이용한 최적 퍼지 예측 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Son;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

Fine-tuning Neural Network for Improving Video Classification Performance Using Vision Transformer (Vision Transformer를 활용한 비디오 분류 성능 향상을 위한 Fine-tuning 신경망)

  • Kwang-Yeob Lee;Ji-Won Lee;Tae-Ryong Park
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.313-318
    • /
    • 2023
  • This paper proposes a neural network applying fine-tuning as a way to improve the performance of Video Classification based on Vision Transformer. Recently, the need for real-time video image analysis based on deep learning has emerged. Due to the characteristics of the existing CNN model used in Image Classification, it is difficult to analyze the association of consecutive frames. We want to find and solve the optimal model by comparing and analyzing the Vision Transformer and Non-local neural network models with the Attention mechanism. In addition, we propose an optimal fine-tuning neural network model by applying various methods of fine-tuning as a transfer learning method. The experiment trained the model with the UCF101 dataset and then verified the performance of the model by applying a transfer learning method to the UTA-RLDD dataset.

A Design Method for Weighted Order Statistic Filters Based on the Perceotron Algorithm (Perceptron 알고리즘을 이용한 가중 순서 통게 필터의 설계)

  • 정병장;이용훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.1-6
    • /
    • 1993
  • In this paper, we observe that the design of optimal weighted order statistic(WOS) filters minimizing the mean absolute error criterion can be though of as a two-class linear classification problem. Based on this observation, the perceptron algorithm is applied to design WOS filters. It is shown, through experiments, that the perceptron algorithm can find optimal or near optimal WOS filters in practical situations.

  • PDF

AROC Curve and Optimal Threshold (AROC 곡선과 최적분류점)

  • Hong, Chong-Sun;Lee, Hee-Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.185-191
    • /
    • 2011
  • In the credit evaluation study with the assumption of mixture distributions, the ROC curve is a useful method to explore the discriminatory power of default and non-default borrowers. The AROC curve is an adjusted ROC curve that can be identified with the corresponding score and is mathematically analyzed in this work. We obtain patterns of this curve by applying normal distributions. Moreover, the relationship between the AROC curve and many classification accuracy statistics are explored to find the optimal threshold. In the case of equivalent variances of two distributions, we obtain that the local minimum of the AROC curve is estimated at the optimal threshold to maximize certain classification accuracies.

A case of corporate failure prediction

  • Shin, Kyung-Shik;Jo, Hongkyu;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.199-202
    • /
    • 1996
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective to solve a specific problem. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the prediction performance. This paper proposes the post-model integration method, which means integration is performed after individual techniques produce their own outputs, by finding the best combination of the results of each method. To get the optimal or near optimal combination of different prediction techniques. Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an objective function subject to numerous hard and soft constraints. This study applied three individual classification techniques (Discriminant analysis, Logit and Neural Networks) as base models to the corporate failure prediction context. Results of composite prediction were compared to the individual models. Preliminary results suggests that the use of integrated methods will offer improved performance in business classification problems.

  • PDF