• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.033 seconds

Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data (차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지)

  • Kim, Songhee;Kim, Sunhye;Yoon, Byungun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

KorPatELECTRA : A Pre-trained Language Model for Korean Patent Literature to improve performance in the field of natural language processing(Korean Patent ELECTRA)

  • Jang, Ji-Mo;Min, Jae-Ok;Noh, Han-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.15-23
    • /
    • 2022
  • In the field of patents, as NLP(Natural Language Processing) is a challenging task due to the linguistic specificity of patent literature, there is an urgent need to research a language model optimized for Korean patent literature. Recently, in the field of NLP, there have been continuous attempts to establish a pre-trained language model for specific domains to improve performance in various tasks of related fields. Among them, ELECTRA is a pre-trained language model by Google using a new method called RTD(Replaced Token Detection), after BERT, for increasing training efficiency. The purpose of this paper is to propose KorPatELECTRA pre-trained on a large amount of Korean patent literature data. In addition, optimal pre-training was conducted by preprocessing the training corpus according to the characteristics of the patent literature and applying patent vocabulary and tokenizer. In order to confirm the performance, KorPatELECTRA was tested for NER(Named Entity Recognition), MRC(Machine Reading Comprehension), and patent classification tasks using actual patent data, and the most excellent performance was verified in all the three tasks compared to comparative general-purpose language models.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

Development of algorithm for work intensity evaluation using excess overwork index of construction workers with real-time heart rate measurement device

  • Jae-young Park;Jung Hwan Lee;Mo-Yeol Kang;Tae-Won Jang;Hyoung-Ryoul Kim;Se-Yeong Kim;Jongin Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.24.1-24.15
    • /
    • 2023
  • Background: The construction workers are vulnerable to fatigue due to high physical workload. This study aimed to investigate the relationship between overwork and heart rate in construction workers and propose a scheme to prevent overwork in advance. Methods: We measured the heart rates of construction workers at a construction site of a residential and commercial complex in Seoul from August to October 2021 and develop an index that monitors overwork in real-time. A total of 66 Korean workers participated in the study, wearing real-time heart rate monitoring equipment. The relative heart rate (RHR) was calculated using the minimum and maximum heart rates, and the maximum acceptable working time (MAWT) was estimated using RHR to calculate the workload. The overwork index (OI) was defined as the cumulative workload evaluated with the MAWT. An appropriate scenario line (PSL) was set as an index that can be compared to the OI to evaluate the degree of overwork in real-time. The excess overwork index (EOI) was evaluated in real-time during work performance using the difference between the OI and the PSL. The EOI value was used to perform receiver operating characteristic (ROC) curve analysis to find the optimal cut-off value for classification of overwork state. Results: Of the 60 participants analyzed, 28 (46.7%) were classified as the overwork group based on their RHR. ROC curve analysis showed that the EOI was a good predictor of overwork, with an area under the curve of 0.824. The optimal cut-off values ranged from 21.8% to 24.0% depending on the method used to determine the cut-off point. Conclusion: The EOI showed promising results as a predictive tool to assess overwork in real-time using heart rate monitoring and calculation through MAWT. Further research is needed to assess physical workload accurately and determine cut-off values across industries.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration (소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구)

  • An, Dong-Uk;Leem, Choon Seong
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 2019
  • Recently, the crime that utilizes the digital platform is continuously increasing. About 140,000 cases occurred in 2015 and about 150,000 cases occurred in 2016. Therefore, it is considered that there is a limit handling those online crimes by old-fashioned investigation techniques. Investigators' manual online search and cognitive investigation methods those are broadly used today are not enough to proactively cope with rapid changing civil crimes. In addition, the characteristics of the content that is posted to unspecified users of social media makes investigations more difficult. This study suggests the site-based collection and the Open API among the content web collection methods considering the characteristics of the online media where the infringement crimes occur. Since illegal content is published and deleted quickly, and new words and alterations are generated quickly and variously, it is difficult to recognize them quickly by dictionary-based morphological analysis registered manually. In order to solve this problem, we propose a tokenizing method in the existing dictionary-based morphological analysis through WPM (Word Piece Model), which is a data preprocessing method for quick recognizing and responding to illegal contents posting online infringement crimes. In the analysis of data, the optimal precision is verified through the Vote-based ensemble method by utilizing a classification learning model based on supervised learning for the investigation of illegal contents. This study utilizes a sorting algorithm model centering on illegal multilevel business cases to proactively recognize crimes invading the public economy, and presents an empirical study to effectively deal with social data collection and content investigation.

  • PDF

Fundamental Research for Establishing Job-Exposure Matrix (JEM) of Farmer Related to Insecticide of Pesticide (II) : Vegetable (농약물질 중 살충제 관련 농업 종사자들의 직무 -노출 매트릭스 구축을 위한 기초 자료 조사 연구 (II) : 채소류)

  • Kim, Ki-Youn;Cho, Man-Su;Lim, Byung-Seo;Lee, Sang-Gil;Knag, Dong-Mug;Kim, Jong-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.293-299
    • /
    • 2014
  • Objectives: The main objective of this study is to investigate domestic usage amount of insecticide for vegetable cultivation to provide fundamental data for establishing job-exposure matrix(JEM) related to farmers treating agricultural insecticide. Materials and Methods: The survey on domestic usage amount of insecticide for vegetable cultivation was conducted by two research methods. The first method is to utilize agricultural pesticides published annually from Korea Crop Protection Association(KCPA). The second method is to apply cultivation area of vegetable announced officially from Statistics Korea(SK). An estimation of domestic usage amount of insecticide for vegetable cultivation through the second method was done by multiplying total cultivation area of vegetable($m^2$) with optimal spray amount of insecticide for vegetable cultivation per unit cultivation area of vegetable ($kg/m^2$). Results: As a result of analysis of public data related to insecticide for vegetable cultivation, it was found that its domestic usage amount has decreased gradually from the first sale year(1969) to current year(2012). There is, however, a considerable difference of annual usage trend of insecticide for vegetable cultivation between shipments and estimation. The annual usage trends of insecticide for vegetable cultivation based on regional classification were different from those based on total aspect. Conclusions: The region which used insecticide for vegetable cultivation the most in Korea was Jeolla-do, followed by Gyeonsang-do, Chungcheong-do, Seoul/Gyeonggi-do, Gangwon-do and Jeju-do. Substantially, mean ratio of usage amounts of insecticide based on shipments and those based on estimation by cultivation area was $281{\pm}115%$, which indicates that usage amounts of insecticide estimated by cultivation area are three times lower than those based on shipments.

A Classification and Extraction Method of Object Structure Patterns for Framework Hotspot Testing (프레임워크 가변부위 시험을 위한 객체 구조 패턴의 분류 및 추출 방법)

  • Kim, Jang-Rae;Jeon, Tae-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.465-475
    • /
    • 2002
  • An object-oriented framework supports efficient component-based software development by providing a flexible architecture that can be decomposed into easily modifiable and composable classes. Object-oriented frameworks require thorough testing as they are intended to be reused repeatedly In developing numerous applications. Furthermore, additional testing is needed each time the framework is modified and extended for reuse. To test a framework, it must be instantiated into a complete, executable system. It is, however, practically impossible to test a framework exhaustively against all kinds of framework instantiations, as possible systems into which a framework can be configured are infinitely diverse. If we can classify possible configurations of a framework into a finite number of groups so that all configurations of a group have the same structural or behavioral characteristics, we can effectively cover all significant test cases for the framework testing by choosing a representative configuration from each group. This paper proposes a systematic method of classifying object structures of a framework hotspot and extracting structural test patterns from them. This paper also presents how we can select an instance of object structure from each extracted test pattern for use in the frameworks hotspot testing. This method is useful for selection of optimal test cases and systematic construction of executable test target.