• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.024 seconds

A Study on Road Characteristic Classification using Exploratory Factor Analysis (탐색적 요인분석을 이용한 도로특성분류에 관한 연구)

  • Cho, Jun-Han;Kim, Seong-Ho;Rho, Jeong-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.53-66
    • /
    • 2008
  • This research is to the establishment of a conceptual framework that supports road characteristic classification from a new point of view in order to complement of the existing road functional classification and examine of traffic pattern. The road characteristic classification(RCC) is expected to use important performance criteria that produced a policy guidelines for transportation planning and operational management. For this study, the traffic data used the permanent traffic counters(PTCs) located within the national highway between 2002 and 2006. The research has described for a systematic review and assessment of how exploratory factor analysis should be applied from 12 explanatory variables. The optimal number of components and clusters are determined by interpretation of the factor analysis results. As a result, the scenario including all 12 explanatory variables is better than other scenarios. The four components is produced the optimal number of factors. This research made contributions to the understanding of the exploratory factor analysis for the road characteristic classification, further applying the objective input data for various analysis method, such as cluster analysis, regression analysis and discriminant analysis.

A hybrid method to compose an optimal gene set for multi-class classification using mRMR and modified particle swarm optimization (mRMR과 수정된 입자군집화 방법을 이용한 다범주 분류를 위한 최적유전자집단 구성)

  • Lee, Sunho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.683-696
    • /
    • 2020
  • The aim of this research is to find an optimal gene set that provides highly accurate multi-class classification with a minimum number of genes. A two-stage procedure is proposed: Based on minimum redundancy and maximum relevance (mRMR) framework, several statistics to rank differential expression genes and K-means clustering to reduce redundancy between genes are used for data filtering procedure. And a particle swarm optimization is modified to select a small subset of informative genes. Two well known multi-class microarray data sets, ALL and SRBCT, are analyzed to indicate the effectiveness of this hybrid method.

A Dynamic Variable Window-based Topographical Classification Method Using Aerial LiDAR Data (항공 라이다 데이터를 이용한 동적 가변 윈도우 기반 지형 분류 기법)

  • Sung, Chul-Woong;Lee, Sung-Gyu;Park, Chang-Hoo;Lee, Ho-Jun;Kim, Yoo-Sung
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.13-26
    • /
    • 2010
  • In this paper, a dynamic variable window-based topographical classification method is proposed which has the changeable classification units depending on topographical properties. In the proposed scheme, to im prove the classification efficiency, the unit of topographical classification can be changeable dynamically according to the topographical properties and repeated patterns. Also, in this paper, the classification efficiency and accuracy of the proposed method are analyzed in order to find an optimal maximum decision window-size through the experiment. According to the experiment results, the proposed dynamic variable window-based topographical classification method maintains similar accuracy but remarkably reduce computing time than that of a fixed window-size based one, respectively.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Selecting the optimal threshold based on impurity index in imbalanced classification (불균형 자료에서 불순도 지수를 활용한 분류 임계값 선택)

  • Jang, Shuin;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.711-721
    • /
    • 2021
  • In this paper, we propose the method of adjusting thresholds using impurity indices in classification analysis on imbalanced data. Suppose the minority category is Positive and the majority category is Negative for the imbalanced binomial data. When categories are determined based on the commonly used 0.5 basis, the specificity tends to be high in unbalanced data while the sensitivity is relatively low. Increasing sensitivity is important when proper classification of objects in minority categories is relatively important. We explore how to increase sensitivity through adjusting thresholds. Existing studies have adjusted thresholds based on measures such as G-Mean and F1-score, but in this paper, we propose a method to select optimal thresholds using the chi-square statistic of CHAID, the Gini index of CART, and the entropy of C4.5. We also introduce how to get a possible unique value when multiple optimal thresholds are obtained. Empirical analysis shows what improvements have been made compared to the results based on 0.5 through classification performance metrics.

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.