• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.03 seconds

Optimization of Color Sorting Process of Shredded ELV Bumper using Reaction Surface Method (반응표면법을 이용한 폐자동차 범퍼 파쇄물의 색채선별공정 최적화 연구)

  • Lee, Hoon
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.23-30
    • /
    • 2019
  • An color sorting technique was introduced to recycle End-of-life automobile shredded bumpers. The color sorting is a innovate method of separating the differences in the color of materials which are difficult to separate in gravity and size classification by using a camera and an image process technique. Experiments were planned and optimal conditions were derived by applying BBD (Box-Behnken Design) in the reaction surface method. The effects of color sensitivity, feed rate and sample size were analyzed, and a second-order reaction model was obtained based on the analysis of regression and statistical methods and $R^2$ and p-value were 99.56% and < 0.001. Optimum recovery was 94.1% under the conditions of color sensitivity, feed rate and particle size of 32%, 200 kg/h, and 33 mm respectively. The recovery of actual experiment was 93.8%. The experimental data agreed well with the predicted value and confirmed that the model was appropriate.

Automatic Estimation of Artemia Hatching Rate Using an Object Discrimination Method

  • Kim, Sung;Cho, Hong-Yeon
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.239-247
    • /
    • 2013
  • Digital image processing is a process to analyze a large volume of information on digital images. In this study, Artemia hatching rate was measured by automatically classifying and counting cysts and larvae based on color imaging data from cyst hatching experiments using an image processing technique. The Artemia hatching rate estimation consists of a series of processes; a step to convert the scanned image data to a binary image data, a process to detect objects and to extract their shape information in the converted image data, an analysis step to choose an optimal discriminant function, and a step to recognize and classify the objects using the function. The function to classify Artemia cysts and larvae is optimally estimated based on the classification performance using the areas and the plan-form factors of the detected objects. The hatching rate using the image data obtained under the different experimental conditions was estimated in the range of 34-48%. It was shown that the maximum difference is about 19.7% and the average root-mean squared difference is about 10.9% as the difference between the results using an automatic counting (this study) and a manual counting were compared. This technique can be applied to biological specimen analysis using similar imaging information.

Fault Diagnosis Algorithm of Electronic Valve using CNN-based Normalized Lissajous Curve (CNN기반 정규화 리사주 도형을 이용한 전자식 밸브 고장진단알고리즘)

  • Park, Seong-Mi;Ko, Jae-Ha;Song, Sung-Geun;Park, Sung-Jun;Son, Nam Rye
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.825-833
    • /
    • 2020
  • Currently, the K-Water uses various valves that can be remotely controlled for optimal water management. Valve system fault can be classified into rotor defects, stator defects, bearing defects, and gear defects of induction motors. If the valve cannot be operated due to a gear fault, the water management operation can be greatly affected. For effective water management, there is an urgent need for preemptive repairs to determine whether gear is damaged through failure prediction diagnosis.. Recently, deep learning algorithms are being applied for valve failure diagnosis. However, the method currently applied has a disadvantage of attaching a vibration sensor to the valve. In this paper, propose a new algorithm to determine whether a fault exists using a convolutional neural network (CNN) based on the voltage and current information of the valve without additional sensor mounting. In particular, a normalized Lisasjous diagram was used to maximize the fault classification performance in the CNN-based diagnostic system.

Improved Minimum Statistics Based on Environment-Awareness for Noise Power Estimation (환경인식 기반의 향상된 Minimum Statistics 잡음전력 추정기법)

  • Son, Young-Ho;Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Application of compressive sensing and variance considered machine to condition monitoring

  • Lee, Myung Jun;Jun, Jun Young;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.231-237
    • /
    • 2018
  • A significant data problem is encountered with condition monitoring because the sensors need to measure vibration data at a continuous and sometimes high sampling rate. In this study, compressive sensing approaches for condition monitoring are proposed to demonstrate their efficiency in handling a large amount of data and to improve the damage detection capability of the current condition monitoring process. Compressive sensing is a novel sensing/sampling paradigm that takes much fewer data than traditional data sampling methods. This sensing paradigm is applied to condition monitoring with an improved machine learning algorithm in this study. For the experiments, a built-in rotating system was used, and all data were compressively sampled to obtain compressed data. The optimal signal features were then selected without the signal reconstruction process. For damage classification, we used the Variance Considered Machine, utilizing only the compressed data. The experimental results show that the proposed compressive sensing method could effectively improve the data processing speed and the accuracy of condition monitoring of rotating systems.

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Cost-Sensitive Case Based Reasoning using Genetic Algorithm: Application to Diagnose for Diabetes

  • Park Yoon-Joo;Kim Byung-Chun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.327-335
    • /
    • 2006
  • Case Based Reasoning (CBR) has come to be considered as an appropriate technique for diagnosis, prognosis and prescription in medicine. However, canventional CBR has a limitation in that it cannot incorporate asymmetric misclassification cast. It assumes that the cast of type1 error and type2 error are the same, so it cannot be modified according ta the error cast of each type. This problem provides major disincentive to apply conventional CBR ta many real world cases that have different casts associated with different types of error. Medical diagnosis is an important example. In this paper we suggest the new knowledge extraction technique called Cast-Sensitive Case Based Reasoning (CSCBR) that can incorporate unequal misclassification cast. The main idea involves a dynamic adaptation of the optimal classification boundary paint and the number of neighbors that minimize the tatol misclassification cast according ta the error casts. Our technique uses a genetic algorithm (GA) for finding these two feature vectors of CSCBR. We apply this new method ta diabetes datasets and compare the results with those of the cast-sensitive methods, C5.0 and CART. The results of this paper shaw that the proposed technique outperforms other methods and overcomes the limitation of conventional CBR.

  • PDF

Partial AUC using the sensitivity and specificity lines (민감도와 특이도 직선을 이용한 부분 AUC)

  • Hong, Chong Sun;Jang, Dong Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.541-553
    • /
    • 2020
  • The receiver operating characteristic (ROC) curve is expressed as both sensitivity and specificity; in addition, some optimal thresholds using the ROC curve are also represented with both sensitivity and specificity. In addition to the sensitivity and specificity, the expected usefulness function is considered as disease prevalence and usefulness. In particular, partial the area under the ROC curve (AUC) on a certain range should be compared when the AUCs of the crossing ROC curves have similar values. In this study, partial AUCs representing high sensitivity and specificity are proposed by using sensitivity and specificity lines, respectively. Assume various distribution functions with ROC curves that are crossing and AUCs that have the same value. We propose a method to improve the discriminant power of the classification models while comparing the partial AUCs obtained using sensitivity and specificity lines.