DOI QR코드

DOI QR Code

Improved Minimum Statistics Based on Environment-Awareness for Noise Power Estimation

환경인식 기반의 향상된 Minimum Statistics 잡음전력 추정기법

  • 손영호 (인하대학교 전자공학부) ;
  • 최재훈 (인하대학교 전자공학부) ;
  • 장준혁 (한양대학교 융합전자공학부)
  • Received : 2011.01.20
  • Accepted : 2011.02.24
  • Published : 2011.04.30

Abstract

In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.

본 논문에서는 다양한 잡음 환경에서 음성향상을 위한 Minimum Statistics (MS) 잡음전력 추정 기법을 제시한다. 기존의 방법에서는 최소값 추적을 위해서 유한한 서치 (search)윈도우를 사용하여 최적으로 신호의 파워 스펙트럼을 수무딩하고 최소 확률을 적용하는 것을 기본으로 한다. 본 논문에서 제안된 알고리즘은 기존의 최소값 서치 윈도우가 다양한 잡음 환경에 상관없이 고정된 사이즈를 사용하는 것에 환경인식 정보를 적용하여 서치 윈도우 사이즈가 Gaussian mixture model(GMM)기반의 잡음 분류 알고리즘을 이용한 결과 값의 비교로 잡음 환경에 따라 변화 하도록 한다. 제안된 음성 향상 기법은 ITU-T P.862 perceptual evaluation of speech quality (PESQ)를 이용하여 평가하였고 기존의 MS방법보다 향상된 결과를 보였다.

Keywords

References

  1. J. W. Shin, J.-H. Chang, and N. S. Kim, "Statistical modeling of speech signals based on generalized gamma distribution," IEEE Signal Processing Letters, vol. 12, no. 3, pp. 258-261, Mar. 2005. https://doi.org/10.1109/LSP.2004.840869
  2. J.-H. Chang and N. S. Kim, "Voice activity detection based on complex Laplacian. model," IEE Electronics Letters, vol. 39, no. 7, pp. 632-634, Apr. 2003. https://doi.org/10.1049/el:20030392
  3. S. F. Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27, no. 2, pp. 113-120, Apr. 1979.
  4. Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error log-spectral amplitude estimator," IEEE Trans. ASSP, vol. 33, no. 2, pp 443-445, Apr. 1985. https://doi.org/10.1109/TASSP.1985.1164550
  5. B. L. Sim, Y. C. Tong, J. S. Chang, and C. T. Tan, "A parametric formulation of the generalized spectral subtraction method," IEEE Trans. on Speech and Audio Processing, vol. 6, no. 4, pp. 328-336, July 1998. https://doi.org/10.1109/89.701361
  6. R. J. McAualy and M. L. Malpass, "Speech enhancement using a soft-decision noise suppression filter," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 137-145, Apr. 1980.
  7. R. Martin, "Spectral subtraction based on minimum statistics," in Proc. Eur. Signal Processing Conf., pp. 1182-1185, 1994.
  8. J. Sohn, W. Sung, "A voice activity detector employing soft decision based noise spectrum adaptation," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 365-368, 1998.
  9. I. Cohen and B. Berdugo, "Noise estimation by minima controlled recursive averaging for robust speech enhancement," IEEE Signal Processing Letters, vol. 9, no. 1, pp. 12-15, Jan. 2002. https://doi.org/10.1109/97.988717
  10. G. Doblinger, "Computationally efficient speech enhancement by spectral minima tracking in subbands," in Proc. EUROSPEECH, vol. 2, pp. 1513-1516, 1995.
  11. R. Martin, "Noise Power Spectral Density Estimation Based. on Optimal Smoothing and Minimum Statistics," IEEE. Trans. on Speech and Audio Processing, vol. 9, no. 5, pp. 504-512, Jul. 2001. https://doi.org/10.1109/89.928915
  12. G. Xuan, W.Zhang, and P. Chai, "EM algorithm of gaussian mixture model and hidden Markov model," in Proc. IEEE International Conference on Image Processing, vol. 1, pp. 145-148, Oct. 2001.
  13. D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, "Speaker verification using adapted Gaussian mixture models," Digital Signal Processing, vol. 10, pp. 19-41, Jan. 2000. https://doi.org/10.1006/dspr.1999.0361
  14. N. S. Kim and J.-H. Chang, "Spectral enhancement based on global soft decision," IEEE Signal Processing Letters, vol. 7, no. 5, pp. 108-110, May 2000. https://doi.org/10.1109/97.841154

Cited by

  1. On-line noise coherence estimation algorithm for binaural speech enhancement system vol.35, pp.3, 2016, https://doi.org/10.7776/ASK.2016.35.3.234
  2. Recognition Performance Improvement for Noisy-speech by Parallel Model Compensation Adaptation Using Frequency-variant added with ML vol.16, pp.8, 2013, https://doi.org/10.9717/kmms.2013.16.8.905