• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.026 seconds

Optimal feature extraction for normally distributed multicall data (가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF

A Tolerant Rough Set Approach for Handwritten Numeral Character Classification

  • Kim, Daijin;Kim, Chul-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.288-295
    • /
    • 1998
  • This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.

  • PDF

An Application of the Balanced Quadratic Classification Rule on the Discriminant Analysis in Growth Curve Model (성장곡선모형의 판별분석에서 균형이차분류법의 적용)

  • Shim, Kyu-Bark
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.2
    • /
    • pp.53-67
    • /
    • 1995
  • The problem considered here is to find the optimal discriminant analysis method in growth curve model. It has been studied how to find correct prior probability for the effective classification in discriminant analysis. We use the balanced condition to calculate prior probability. From the informative simulation study, new classification rule for the growth curve model is suggested. The suggested classification rule has better classification result than the other previously suggested method in terms of error rate criterion.

  • PDF

Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification (GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법)

  • Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.167-175
    • /
    • 2007
  • Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.

  • PDF

A Comparison Study of Multiclass SVM Methods in Microarray Data

  • Hwang, Jin-Soo;Lee, Ji-Young;Kim, Jee-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.311-324
    • /
    • 2006
  • The Support Vector Machine(SVM) is very functional and efficient classification method to any other classification analysis method. However, its optimal extension to more than two classes is not obvious. In this paper several multi-category SVM methods are introduced and compared using simulation and real data sets. Also comparison with traditional multi-category classification and SVM based methods is performed.

  • PDF

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

Power Efficient Classification Method for Sensor Nodes in BSN Based ECG Monitoring System

  • Zeng, Min;Lee, Jeong-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1322-1329
    • /
    • 2010
  • As body sensor network (BSN) research becomes mature, the need for managing power consumption of sensor nodes has become evident since most of the applications are designed for continuous monitoring. Real time Electrocardiograph (ECG) analysis on sensor nodes is proposed as an optimal choice for saving power consumption by reducing data transmission overhead. Smart sensor nodes with the ability to categorize lately detected ECG cycles communicate with base station only when ECG cycles are classified as abnormal. In this paper, ECG classification algorithms are described, which categorize detected ECG cycles as normal or abnormal, or even more specific cardiac diseases. Our Euclidean distance (ED) based classification method is validated to be most power efficient and very accurate in determining normal or abnormal ECG cycles. A close comparison of power efficiency and classification accuracy between our ED classification algorithm and generalized linear model (GLM) based classification algorithm is provided. Through experiments we show that, CPU cycle power consumption of ED based classification algorithm can be reduced by 31.21% and overall power consumption can be reduced by 13.63% at most when compared with GLM based method. The accuracy of detecting NSR, APC, PVC, SVT, VT, and VF using GLM based method range from 55% to 99% meanwhile, we show that the accuracy of detecting normal and abnormal ECG cycles using our ED based method is higher than 86%.

Performance of GMM and ANN as a Classifier for Pathological Voice

  • Wang, Jianglin;Jo, Cheol-Woo
    • Speech Sciences
    • /
    • v.14 no.1
    • /
    • pp.151-162
    • /
    • 2007
  • This study focuses on the classification of pathological voice using GMM (Gaussian Mixture Model) and compares the results to the previous work which was done by ANN (Artificial Neural Network). Speech data from normal people and patients were collected, then diagnosed and classified into two different categories. Six characteristic parameters (Jitter, Shimmer, NHR, SPI, APQ and RAP) were chosen. Then the classification method based on the artificial neural network and Gaussian mixture method was employed to discriminate the data into normal and pathological speech. The GMM method attained 98.4% average correct classification rate with training data and 95.2% average correct classification rate with test data. The different mixture number (3 to 15) of GMM was used in order to obtain an optimal condition for classification. We also compared the average classification rate based on GMM, ANN and HMM. The proper number of mixtures on Gaussian model needs to be investigated in our future work.

  • PDF

A Study on the Validity Test of Patient Classification System for Optimal Nursing Manpower of Hospital in China (중국 일 종합병원에서 적정 간호인력 추정을 위한 환자분류체계의 타당성 검증)

  • Song, Young-Sun;Lee, Dong-Mei
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.11 no.2
    • /
    • pp.209-218
    • /
    • 2005
  • Purpose: This study was to setup the basis on hospital and national nursing manpower estimation accurately according to apply patient classification system of Song's study to China hospital system. Method: This study was surveyed to 964 patients at surgical and medical ward on Yanbian University Hospital in China from 17th to 31th January, 2005. Results: There was study results to test hypotheses for estimating optimal nursing manpower as follows. First, a trimodel classification scheme was developed which suggested three categories of patients as minimal care(category 1), moderate care(category 2), intensive care(category 3). Second, there was not significant difference with nursing time by sex. Third, there was not significant difference with nursing time by medical wards. Fourth, there was not significant difference with average nursing care time for each category of patients. Category 1 was estimated to spend average 19.59minutes for patients, Category 2 was about 35.68 minutes, Category 3 was 72.07minutes respectively. Total nursing hours was 62,610 minutes. Conclusion: Patient classification system of Song's study is validity for optimal nursing manpower of hospital in China.

  • PDF

Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment (클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법)

  • Cho, Kyu-Cheol;Kim, Jae-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.11-18
    • /
    • 2014
  • In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.