• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.029 seconds

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

Evaluation Method of the SOM based Optimal Image Classification (SOM 기반 이미지 최적 분류 평가 방법)

  • Lee, Gyung-Ah;Cho, Dong-Sub
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.256-258
    • /
    • 2012
  • 급속히 발전한 정보기술로 인해 정보들을 쉽게 생산 및 배포할 수 있게 되었으며 다양한 정보들이 범람하게 되었다. 이러한 정보의 범람으로 대량의 정보들 중에서 사용자가 원하는 정보를 쉽고 정확하게 보여주기 위한 필요성이 증대되고 있다. 본 연구에서는 패턴분석 방법으로 다차원 입력 데이터을 군집화하여 2차원 형태의 결과값을 도출하는 무감독학습방법인 SOM(Self-Organizion Maps)을 이용하여 입력된 디지털 이미지 결과의 객관적이고 타당한 평가를 위한 방법을 제안하고자 한다.

  • PDF

AUTOMATED ELECTROFACIES DETERMINATION USING MULTIVARIATE STATISTICAL ANALYSIS

  • Kim Jungwhan;Lim Jong-Se
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.10-14
    • /
    • 1998
  • A systematic methodology is developed for the electrofacies determination from wireline log data using multivariate statistical analysis. To consider corresponding contribution of each log and reduce the computational dimension, multivariate logs are transformed into a single variable through principal components analysis. Resultant principal components logs are segmented using the statistical zonation method to enhance the efficiency and quality of the interpreted results. Hierarchical cluster analysis is then used to group the segments into electrofacies. Optimal number of groups is determined on the basis of the ratio of within-group variance to total variance and core data. This technique is applied to the wells in the Korea Continental Shelf. The results of field application demonstrate that the prediction of lithology based on the electrofacies classification matches well to the core and the cutting data with high reliability This methodology for electrofacies classification can be used to define the reservoir characteristics which are helpful to the reservoir management.

  • PDF

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

A Fault Diagnosis Methodology for Module Process of TFT-LCD Manufacture Using Support Vector Machines (SVM을 이용한 TFT-LCD 모듈공정의 불량 진단 방안)

  • Shin, Hyun-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.93-97
    • /
    • 2010
  • Fast incipient fault diagnosis is becoming one of the key requirements for economical and optimal process operation management in high-tech industries. Artificial neural networks have been used to detect faults for a number of years and shown to be highly successful in this application area. This paper presents a novel test technique for fault detection and classification for module process of TFT-LCD manufacture using support vector machines (SVMs). In order to evaluate SVMs, this paper examines the performance of the proposed method by comparing it with that of multilayer perception, one of the artificial neural network techniques, based on real benchmarking data.

Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification (시계열 분류를 위한 PIPs 탐지와 Persist 이산화 기법들을 결합한 시계열 표현)

  • Park, Sang-Ho;Lee, Ju-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.97-106
    • /
    • 2010
  • Various time series representation methods have been suggested in order to process time series data efficiently and effectively. SAX is the representative time series representation method combining segmentation and discretization techniques, which has been successfully applied to the time series classification task. But SAX requires a large number of segments in order to represent the meaningful dynamic patterns of time series accurately, since it loss the dynamic property of time series in the course of smoothing the movement of time series. Therefore, this paper suggests a new time series representation method that combines PIPs detection and Persist discretization techniques. The suggested method represents the dynamic movement of high-diemensional time series in a lower dimensional space by detecting PIPs indicating the important inflection points of time series. And it determines the optimal discretizaton ranges by applying self-transition and marginal probabilities distributions to KL divergence measure. It minimizes the information loss in process of the dimensionality reduction. The suggested method enhances the performance of time series classification task by minimizing the information loss in the course of dimensionality reduction.

Hyperspectral Image Fusion for Tumor Detection (초분광 영상 융합을 이용한 종양인식)

  • Xu Cheng-Zhe;Kim In-Taek
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.11-20
    • /
    • 2006
  • This paper presents a method for detecting tumors on chicken carcasses by fusion of hyperspectral fluorescence and reflectance images. Classification of normal skin and tumor is performed by the image obtain 어 from optimal band ratio which minimizes the overlapping area of PDFs for normal skin and tumor. This method yields four feature images, each of them represents the ratio of two intensity values from a pixel. Classification is achieved by applying ISODATA to each pixel from the feature images. For the analysis of reflectance image, band selection method is proposed based on the information quantity, many effective features are acquired for the classification by defining the linear transformation selecting the projection axis, accordingly, accurate interpretation of images is possible in the reflectance image and automatic feature selection method is realized. Feature images from reflectance images are also classified by ISODATA and combined with the result from fluorescence images. Experimental result indicates that improved performance in term of reducing false detection rate is observed.

A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification (한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구)

  • Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.681-691
    • /
    • 2008
  • In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.

Spectral Mixture Analysis Using Modified IEA Algorithm for Forest Classification (수정된 IEA 기반의 분광혼합분석 기법을 이용한 임상분류)

  • Song, Ahram;Han, Youkyung;Kim, Younghyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.219-226
    • /
    • 2014
  • Fractional values resulted from the spectral mixture analysis could be used to classify not only urban area with various materials but also forest area in more detailed spatial scale. Especially South Korea is largely consist of mixed forest, so the spectral mixture analysis is suitable as a classification method. For the successful classification using spectral mixture analysis, extraction of optimal endmembers is prerequisite process. Though geometric endmember selection has been widely used, it is barely suitable for forest area. Therefore, in this study, we modified Iterative Error Analysis (IEA), one of the most famous algorithms of image endmember selection which extracts pure pixel directly from the image. The endmembers which represent deciduous and coniferous trees are automatically extracted. The experiments were implemented on two sites of Compact Airborne Spectrographic Imager (CASI) and classified forest area into two types. Accuracies of each classification results were 86% and 90%, which mean proposed algorithm effectively extracted proper endmembers. For the more accurate classification, another substances like forest gap should be considered.

Feature Selection for Image Classification of Hyperion Data (Hyperion 영상의 분류를 위한 밴드 추출)

  • 한동엽;조영욱;김용일;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.170-179
    • /
    • 2003
  • In order to classify Land Use/Land Cover using multispectral images, we have to give consequence to defining proper classes and selecting training sample with higher class separability. The process of satellite hyperspectral image which has a lot of bands is difficult and time-consuming. Furthermore, classification result of hyperspectral image with noise is often worse than that of a multispectral image. When selecting training fields according to the signatures in the study area, it is difficult to calculate covariance matrix in some clusters with pixels less than the number of bands. Therefore in this paper we presented an overview of feature extraction methods for classification of Hyperion data and examined effectiveness of feature extraction through the accuracy assesment of classified image. Also we evaluated the classification accuracy of optimal meaningful features by class separation distance, which is also a method for band reduction. As a result, the classification accuracies of feature-extracted image and original image are similar regardless of classifiers. But the number of bands used and computing time were reduced. The classifiers such as MLC, SAM and ECHO were used.