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Abstract: This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable 

selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is 

necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, time-

series prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more 

difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to 

tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods 

have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a  less 

accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves 

of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, 

comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the 

proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality. 
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1. Introduction
An important subset selection, which is a vital combinatorial 

optimization problem in multivariate statistics, is considered in 

this paper. The objective of the problem is to provide faster and 

more cost-effective predictors for the purpose of improving the 

prediction performance [1]. Its applications widely range from 

machine learning, time-series prediction, and multi-class 

classification to noise detection. 

In this paper, we focus on the variable selection problem of 

multiple linear regression models. It is the selection of the 

optimal subset of variables in order to reliably construct a 

multiple linear regression model. There is no doubt that the all-

possible regression approach called exact method is the best 

because it examines every possible model for the p independent 

variables. However, since this problem has NP-complete nature, 

it becomes more difficult to find the optimal solution by all-

possible regression approach.  When the number of variable 

generally exceeds 40, it is no longer practical to obtain the 

optimum by exact methods. Exact methods are based on the 

branch-and-bound (BNB) algorithm. Furnival and Wilson [2] 

proposed the earliest BNB algorithm for this problem of 

multiple linear regression model. Many authors have further 

developed the efficient BNB algorithms (Duarte Silva [3][4], 

Gatu and Kontoghiorghes [5], Hofmann et al. [6], Brusco et al. 

[7], and Pacheco et al. [8]).  

Heuristic methods are more frequently used for the large size 

of the subset selection problem. Heuristic methods  are 

usually classified into two categories: simple heuristics and 

meta- heuristics. Simple heuristic methods involve forward 

selection, backward elimination, and stepwise regression. The 

computing time for simple heuristics is fast, but the solution 

quality is generally poor. Metaheuristic methods have been 

developed to provide better solution quality than simple 

heuristics. Two typical metaheuristic methods have been used 

previously to solve the optimal subset selection problem: tabu 

search (TS) [9] and hybrid genetic and simulated annealing 

algorithm (GSA) [10]. However, these two methods have  

shortcomings. The tabu search method requires a large amount 

of computing time, and the hybrid GSA method produces a less 

accurate solution. 
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To overcome their shortcomings, we propose an improved 

tabu search to reduce moves of the neighborhood and to adopt 

an effective search strategy for neighborhoods. To evaluate the 

performance of the proposed method,  comparative studies are 

performed on small literature data sets and on large simulation 

data sets.  

The remainder of this paper is organized as follows. The 

model of subset selection problem is introduced in Section 2. In 

Section 3, the previous two metaheuristic methods, which are 

TS [9] and hybrid GSA [10] are briefly described, and we 

propose an improved tabu search in Section 4. In Section 5, the 

results of the computational experiments on both benchmark 

problem [10] and simulation data sets are presented. Finally 

conclusions are offered in Section 6. 

2. The Subset Selection Problem
Finding an appropriate subset of regressor variables for the 

model is usually called the subset selection (or variable 

selection) problem.  It is the selection of the optimal subset of 

variables in order to reliably construct a multiple linear 

regression model.  

Let p the number of independent variables in the full model 

and k the number of independent variables selected in the 

model. The subset selection model is as follows. 

Y = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 𝜀𝜀     (1) 

There are 2p − 1 possible subset models. When p > 40, 

computational burdens to construct optimal subset model are 

increased exponentially due to the NP-complete nature of the 

problem. 

For the subset selection problem, several measures with 

respect to the selection criteria have been proposed such as 

adjusted R2, Mallow’s Cp, and Akaike’s AIC (see Draper and 

Smith [11] and Mogomery et al. [12]).  In this paper, we focus 

on the selection criterion of  adjusted R2. The adjusted R2 is 

given by 

 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘/(𝑛𝑛−𝑘𝑘)
𝑆𝑆𝑆𝑆𝑆𝑆/(𝑛𝑛−1)      (2) 

where  𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘  is residual sum of squares for the k-variable 

model, SST is total sum of squares, and n is the number of 

observations. 

3. The Previous Metaheuristic Methods
3.1 TS (Drezner [9]) 

Tabu search, designed to escape from local optimum, is a 

metaheuristic algorithm for solving optimization problems. 

Motivated by Glover [13] as an optimization tool applicable to 

nonlinear covering problems, the TS algorithm was originally 

proposed by  Glover [14]. The basic idea of the TS is to expand its 

search beyond local optimality using adaptive memory. The adaptive 

memory is a mechanism based on the tabu list of prohibited moves. 

Use of the tabu list is one way to prevent cycling and guide the 

search towards unexplored region of the solution space.  

The tabu search algorithm has been successfully applied to 

telecommunications path assignment [15], neural network 

pattern recognition [16], machine learning [17], just-in-time 

scheduling [18], and electronic circuit design [19]. 

 Drezner [9] developed a tabu search for the subset selection 

problem. The TS procedure is described in the following 

pseudocode. 

01: s = initial random solution 
02: best = s 
03: tabuList = ø 
04: While ( i >= 30 ) Do 
05:   bestNeighbor = null 
06:   For ( s' in neighborhood(s) ) Do 
07:  If ( not tabuCodition(s,tabuList)) and 

 f(s') > f(bestNeighbor)) Then 
08:  bestNighbor = s' 
09:      End If 
10:   End For 
11:   tabuList.push(featureDifferences(s,bestNighbor)) 
12:   While( tabulist.size > 10 ) 
13:      tabuList.removeFirst() 
14:   End While 
15:   s = bestNeighbor 
16:   If ( f(s) > f(best) ) Then 
17:  best = s 
18:  i = 1 
19:   Else 
20:  i = i + 1 
21:   End If 
22: End While 

Drezner [9] generated all neighborhoods by three moves, 

which are adding a variable, removing a variable, and 

swapping variables. For example, consider a set of p = 5 

independent variables: full-set = {x1,  x2,  x3,  x4, x5}  and a 
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subset of k= 2 variables: {x1 ,  x2}. All neighborhoods of this 

subset consist of the following moves in Table 1. 

Table 1: All neighborhoods of subset { 𝑥𝑥1,  𝑥𝑥2} 
Adding a variable:   {𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥3}, 
{𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥4}, {𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥5} 
Removing a variable:  {𝑥𝑥1}, {𝑥𝑥2} 
Swapping variables: { 𝑥𝑥2,  𝑥𝑥3}, { 𝑥𝑥2,  𝑥𝑥4}, { 𝑥𝑥2,  𝑥𝑥5}, 
{𝑥𝑥1,  𝑥𝑥3}, {𝑥𝑥1,  𝑥𝑥4}, {𝑥𝑥1,  𝑥𝑥5} 

Drezner [9] also adapted the stopping criterion as the total 

number of 30 iterations without improving the best-so-far 

solution. The size of the tabu list was set to 10. 

3.2 Hybrid GSA 

Lin et. al. [20] suggested the original version of GSA for 

solving some NP-hard problems such as knapsack problem, 

travelling salesman problem, and set partitioning problem. 

Hasan [10] proposed a hybrid GSA for the subset selection 

problem, in which a genetic algorithm (GA) [21] is combined 

with a simulated annealing (SA) algorithm [22]. The 

pseudocode for the hybrid GSA algorithm is as follows.  

The SA operator is incorporated into the generation of 

children produced by the genetic operators. It is applied to 

decide which two of the parents and children remain. That is, if 

children are better than parents, then the parents is replaced by 

the children. If parents are better, they are replaced with the 

chosen probability as shown in the pseudocode of GSA. 

Hasan [10] suggested that the number of the population, 

crossover rate, mutation rate, maximum number of iteration, 

the initial temperature and the cooling rate is chosen as 100, 0.8, 

0.1, 1000, 100 and 0.9, respectively. 

4. The Proposed Method
An improved tabu search (ITS) is proposed in this paper for 

solving the subset selection problem. The proposed method 

addresses shortcomings in two typical metaheuristic methods 

that have previously been developed. The tabu search method 

takes a large amount of computing time, due to many 

neighborhood moves, and the hybrid GSA method produces a 

less accurate solution. The proposed method is a fast tabu 

search that reduces moves of the neighborhood and adopts an 

effective search strategy for neighborhoods.  

4.1 Neighborhood Moves 
The neighborhood of Drezner [9] was generated by three 

moves, which are adding a variable, removing a variable, and 

swapping variables. In Table 1 of the previous section, 

however, most of neighborhoods of swapping variables can be 

tentatively  explored by the search engine with the 

neighborhood of only adding and removing a variable. For 

example, if the subset { x2,  x3} generated by swapping 

variables is optimum, it can be also obtained by adding 

{x1,  x2} to  x3 variable, and then removing  x1 variable from 

the resulting subset of {x1 ,  x2,  x3} . That is, it can be 

transitively searched from {x1 ,  x2}  to {x1,  x2,  x3}  to 

{ x2,  x3} . This implies that the move of swapping may be 

replaced by two moves of adding and removing.  

As the number of variable increases, the number of the 

neighborhood of swapping becomes larger. The number of 

   01: population = initial random population 
   02: best = null 
   03: For ( i = 1 ; i <= 1000 ; i = i+1) Do 
   04:   b = the best solution in population 
   05:      If (f(best) < f(b) ) Then 
   06:      best = b 
   07:  End If 
   08:   new_population = null 
   09:      For (j = 1 ; j <= 100 ; j = j+2) Do 
   10:   parent1 = selection(population) 
   11:   parent2 = selection(population) 
   12:   If (random(0,1) < 0.8) Then 
   13:  children = crossover(parent1,parent2) 
   14:   child1 = children[1] 
   15:   child2 = children[2] 
   16:   Else 
   17:   child1 = parent1 
   18:     child2 = parent2 
   19:   End If 
   20:   child1 = mutation(child1) 
   21:   child2 = mutation(child2) 
   22:   △E1 = f(child1) – f(parent1) 
   23:   If (△E1 > 0 or random(0,1) < exp(△E1 / t) Then 
   24:  new_population[j] = child1 
   25:   Else 
   26:  new_population[j] = parent1 
   27:   End If 
   28:     △E2 = f(child2) – f(parent2) 
   29:      If (△E2 > 0 or random(0,1) < exp(△E2 / t) Then 
   30:  new_population[j+1] = child2 
   31:   Else 
   32:  new_population[j+1] = parent2 
   33:     End If 
   34:      End For 
   35:   population = new_population 
   36:   t = 0.9*t 
   37: End For 
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neighborhood of swapping variables is totally k(p-k). 

In order to reduce the computing time, we suggest that the 

neighborhood with swapping should be entirely excluded from 

the proposed method. Practically, from our computational 

results, we noticed that our search engine with only two moves, 

adding or removing a variable, plays a sufficient role in 

improving the current best solution. Consequently, the 

neighborhood strategy without swapping variables reduces a 

considerable amount of computing time.  

4.2 Search Strategies for Neighborhoods 
Widmer & Hertz [23] and Tailard [24] proposed tabu search 

for the flow shop scheduling problem. They also suggested two 

specific search strategies: the best move strategy and the first 

move strategy. The best move strategy examines all  

neighborhoods and selects the best move that is not on the 

prohibited tabu list. The first move strategy examines the 

neighborhoods and selects the first move that improves the 

current best solution. If there is no first move that improves the 

current best solution, the first move strategy eventually 

becomes equivalent to the best move strategy. 

As depicted in Figure 1, the procedure of improving the best 

solution can be divided into two phases: Phase-I and Phase-II. 

In the Phase-I, the procedure for improving the best solution is 

rapidly progressed. After the solution reaches a local optimum 

through the tabu search, it is difficult to improve the local 

optimum. Accordingly, the procedure of improving the local 

optimum is  slowly processed in the Phase-II 

In the improved tabu search, the first move strategy is 

adopted. 

In Phase-I, the first move strategy plays a role in rapidly 

improving the current best solution.  

The pseudocode of the first move strategy is as follows. 

   01: s = initial random solution 
   02: best = s 
   03: tabuList = ø 
   04: i = 1 
   05: While (i >= 30) Do 
   06:   bestNeighbor = null 
   07:   For ( s' in neighborhood(s) ) Do 
   08:    If ( s'∉tabulist and f(bestNeighbor) <  f(s') )Then 
   09:   bestNeighbor = s' 
   10:   If ( f(best) < f(bestNeighbor)) Then    
   11:   Break 
   12:    End If 

   13:      End If 
   14:   End For 
   15:   s = bestNeighbor 
   16:   If ( f(s) > f(best)) Then 
   17:  best = s 
   18:  i = 1 
   19:   Else 
   20:      i = i + 1 
   21:   End If 
   22:      tabuList.push(s) 
   23:   If ( tabuList.size > 10 ) Then 
   24:      tabuList.removeFirst() 
   25:   End If 
   26:   i = i + 1 
   27: End While 

Figure 1: The Phase-I and Phase-II 

4.3 Tabu List 
In Drezner [9], the tabu list contains a list of moves. In the 

proposed ITS method, the tabu list contains a list of solutions. 

In our experiments, we noticed that our tabu list of solutions is 

more efficient than that of moves for this problem. 

4.4 Stopping Criterion 
In our experiments, stopping criterion is the total number of 

30 iterations without improving the best-so-far solution.  

5. Computational Results
Comparative analytical tests were performed to compare 

the proposed method with the two previous metaheuristic 

methods.  Experiments were initially performed using data 

sets obtained from the literature to evaluate their performance. 

Local optimum 

Phase-I Phase-II 
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These data sets consisted of a small number of variables (less 

than 24).  To further evaluate the performance of the proposed 

method for large number of variables, we randomly generated 

large data sets up to 100 variables. That is, the number of 

variable varies from 40, 60, 80 to 100. Results for the small 

literature data sets are reported in the Section 5.1. 

Computational results for the large simulation data sets are 

summarized in the Section 5.2. All computational experiments 

were conducted  on an Intel i7 PC with 3.4 GHz CPU and 8 

GB RAM, and all source codes were implemented with R 

language. 

5.1 The Benchmark Problem 
In Table 2, p, n, Best, and Freq. are defined as follows. 

p :     the total number of independent variables. 

n :     the number of sample data. 

Best :   the Maximum of 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  for 10 trials. 

Mean :  the Mean of  𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  for 10 trials. 

Freq :  the number of Best found by each method for 10 trials. 

As the experimental results in Table 2 indicate, all methods 

find the optimal value of Radj
2 . In the value of Freq., however, 

the performance of TS is more or less worse than that of the 

proposed  ITS method. 

5.2 Simulation Data Sets 
To further test the performance of the ITS method, the 

simulation data sets were randomly generated as follows. 

i) Independent variables were generated by normal

distribution with a mean 0 and a standard deviation 1. 

ii) Error terms were generated by normal distribution with a

mean 0 and a standard deviation λσ, where σ is standard 

deviation of actual regression equation, and λ is a constant. 

iii) The number of sample data is five times the total number

of independent variables. 

The value of E is given by the following Equation (3). 

E =  k
p
  , (3) 

where k is the number of sample data and is five times the 

total number of independent variables, and p is the total 

number of independent variables.  

Figure 2: The Computing Time of GSA, TS and ITS 

Table 3: The computing  (sec.) of GSA , TS and ITS 

p GSA TS ITS 
40 32.641 3.109 0.447 
60 72.442 22.984 1.593 
80 140.028 98.874 3.546 

100 233.830 267.518 8.058 

From the computational results shown in Tables 4 to 7, it is 

clear that the proposed ITS method outperforms the GSA and 

TS methods in terms of the computing time and solution 

quality. As shown in Figure 2, the ITS method is the fastest. 

Specifically, when the value of p is 100, the GSA and TS 

methods take a considerable amount of computing time. As 

seen in Table 3, the computing time (sec.) of GSA, TS, and 

ITS is 233.8, 267.5 and 8.058, respectively. 

6. Conclusions
In the subset selection problem, all-possible regression or 

exact algorithms, such as branch-and-bound programming, 

obtain the global optimum, but their computational feasibility 

diminishes for a large number of variables (p > 40) due to long 

processing times. Simple heuristic methods, often used in 

statistical SAS programs, include forward selection, backward 

elimination, and stepwise regression methods. Their computing 

time is fast, but solution quality is generally poor.  

In general, metaheuristic methods provide better solution 

quality than simple heuristics. In the subset selection problem, 

two typical metaheuristic methods, TS and hybrid GSA, have 

been used. However, these two methods have shortcomings. 

The tabu search method requires a large amount of computing 

time, due to many neighborhood moves, and the hybrid GSA 

method produces a less accurate solution. 
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Table 2: Experimental results of GSA, TS (Drezner [9]) and ITS (Improved TS) 

Data Set p n GSA TS ITS 
Best Mean Freq. Best Mean Freq. Best Mean Freq. 

Auto 11 65 0.543027 0.543027 10/10 0.543027 0.542852 8/10 0.543027 0.543027 10/10 
Bankbill 15 71 0.994915 0.994915 10/10 0.994915 0.994898 7/10 0.994915 0.994915 10/10 

Belle 7 27 0.649502 0.649502 10/10 0.649502 0.649502 10/10 0.649502 0.649502 10/10 
Bodywomen 23 260 0.546150 0.546150 10/10 0.546150 0.546125 7/10 0.546150 0.546150 10/10 

Horse 13 102 0.870527 0.870527 10/10 0.870527 0.870527 10/10 0.870527 0.870527 10/10 
Papir 15 29 0.972387 0.972387 10/10 0.972387 0.972387 10/10 0.972387 0.972387 10/10 

Pysical 10 22 0.964580 0.964580 10/10 0.964580 0.964580 10/10 0.964580 0.964580 10/10 
US Crime 15 47 0.597745 0.597745 10/10 0.597745 0.897685 9/10 0.597745 0.597745 10/10 

Table 4: Experimental results of GSA, TS and ITS (p=40, n=200)

E λ GSA TS ITS 
Best Mean Freq. Best Mean Freq. Best Mean Freq. 

0.25 0.25 0.936571 0.936571 10/10 0.936571 0.936571 10/10 0.936571 0.936571 10/10 
0.65 0.743673 0.743665 9/10 0.743673 0.743616 8/10 0.743673 0.743673 10/10 

0.5 0.25 0.936571 0.936571 10/10 0.936571 0.936571 10/10 0.936571 0.936571 10/10 
0.65 0.705421 0.705421 10/10 0.705421 0.705360 6/10 0.705421 0.705421 10/10 

0.75 0.25 0.943397 0.943397 10/10 0.943397 0.943353 7/10 0.943397 0.943397 10/10 
0.65 0.760162 0.760162 10/10 0.760162 0.759768 7/10 0.760162 0.760162 10/10 

Table 5: Experimental results of GSA, TS and ITS (p=60, n=300)

E λ GSA TS ITS 
Best Mean Freq. Best Mean Freq. Best Mean Freq. 

0.25 0.25 0.948695 0.948466 0/10 0.948737 0.948737 9/10 0.948737 0.948737 10/10 
0.65 0.689304 0.690387 0/10 0.690549 0.690504 7/10 0.690549 0.690549 10/10 

0.5 0.25 0.944630 0.944193 0/10 0.944781 0.944781 10/10 0.944781 0.944781 10/10 
0.65 0.713936 0.712843 0/10 0.714963 0.714915 2/10 0.714963 0.714963 10/10 

0.75 0.25 0.940132 0.939687 1/10 0.940132 0.940116 8/10 0.940132 0.940132 10/10 
0.65 0.720683 0.718374 0/10 0.720867 0.720479 6/10 0.720867 0.720867 10/10 

Table 6: Experimental results of GSA, TS and ITS (p=80, n=400)

E λ GSA TS ITS 
Best Mean Freq. Best Mean Freq. Best Mean Freq. 

0.25 0.25 0.944685 0.944299 0/10 0.945054 0.945049 7/10 0.945054 0.945054 10/10 
0.65 0.733602 0.732183 0/10 0.736012 0.735993 8/10 0.736012 0.736012 10/10 

0.5 0.25 0.942780 0.941569 0/10 0.944055 0.944046 7/10 0.944055 0.944055 10/10 
0.65 0.696030 0.691928 0/10 0.70374 0.703740 10/10 0.703740 0.703740 10/10 

0.75 0.25 0.935835 0.910728 0/10 0.939282 0.939282 10/10 0.939282 0.939282 10/10 
0.65 0.659400 0.655344 0/10 0.674227 0.674207 9/10 0.674227 0.674227 10/10 

Table 7: Experimental results of GSA, TS and ITS (p=100, n=500)

E λ GSA TS ITS 
Best Mean Freq. Best Mean Freq. Best Mean Freq. 

0.25 0.25 0.937582 0.937260 0/10 0.938899 0.938883 4/10 0.938899 0.938899 10/10 
0.65 0.712726 0.711461 0/10 0.719262 0.719206 6/10 0.719262 0.719262 10/10 

0.5 0.25 0.942780 0.941569 0/10 0.944055 0.944046 7/10 0.944055 0.944055 10/10 
0.65 0.696030 0.691928 0/10 0.703740 0.703740 10/10 0.703740 0.703740 10/10 

0.75 0.25 0.947111 0.943321 0/10 0.947830 0.947830 10/10 0.947830 0.947830 10/10 
0.65 0.728375 0.722315 0/10 0.732835 0.732833 9/10 0.732835 0.732835 10/10 
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To overcome the shortcomings of these methods, an 

improved tabu search (ITS) was developed to reduce moves of 

the neighborhood and to adopt an effective search strategy for 

the neighborhoods. To evaluate the performance of the 

proposed ITS method, comparative analytical tests were 

performed on small literature data sets and on large simulation 

data sets. Computational results showed that the proposed 

method outperforms the previous metaheuristics in terms of the 

computing time and solution quality. 
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