• Title/Summary/Keyword: optimal beamforming

Search Result 90, Processing Time 0.027 seconds

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Reduced Rank Eigen-Space Beamforming for Adaptive Array Systems (적응형 배열 안테나를 위한 감소 차수 고유 공간 빔형성 알고리즘)

  • Hyeon, Seung-Heon;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.336-341
    • /
    • 2008
  • In this paper, beamforming algorithm is proposed which can obtain diversity gain in beamforming system that deploy antenna elements with half-wavelength. The proposed algorithm provides beam-pattern using eigen-vectors that span received signal subspace. The criterion to decide optimal rank of eigen-space used for beamforming is also proposed. A beamforming system applied the proposed algorithm shows better performance with diversity gain as getting larger angle spread. This paper provides a description of proposed algorithm with analysis of the performance using various computer simulations.

CQI Quantization Scheme in Random Beamforming System (Random Beamforming 시스템에서의 CQI 양자화 기법)

  • Ko, Kyeong-Jun;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.170-176
    • /
    • 2009
  • It has been known that multiuser MIMO systems have better performance than single-user MIMO systems. However, multiuser MIMO systems should eliminate inter-user interferences which are generated by allocating data to multiple users simultaneously There is zero-forcing beamforming (ZFBF) as scheme used widely among algorithms to eliminate inter-user interferences. But, it needs many feedback bits since BS knows quite exact channel state information to use this scheme in real systems. Random beamforming (RBF) was proposed to cope with a defect of ZFBF[1]. RBF is a multiuser scheme to send data to users who have optimal performance with predetermined codebook, each receiver feeds back a index of codeword which has optimal performance within the codebook and its CQI information. [1] assumes that the BS knows perfect CQI information of each receiver but CQI information should be quantized in the real systems. Therefore, in this paper, efficient CQI quantization scheme for RBF system is proposed.

A MIMO-OFDMA System Based on Grassmannian Beamforming with Antenna Selection (안테나 선택을 이용한 Grassmannian Beamforming 기반의 MIMO-OFDMA 시스템)

  • Yang, Suck-Chel;Park, Dae-Jin;Hong, Jeong-Ki;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.59-69
    • /
    • 2007
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on Grassmannian beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system to reduce feedback information for the beamforming, we also apply Grassmannian Beamforming. Furthermore, we propose antenna selection scheme which performs the beamforming with more useful transmit antennas. In the proposed system, the optimal combination of transmit antennas with maximum MRT (Maximum Ratio Transmission) beamforming gain, is selected. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CIR region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code.

Application of Diversity Technique to the Beamforming System for Mobile Communication

  • Ryu, Kil-Hyen;Hong, Jae-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.119-128
    • /
    • 2003
  • A space diversity technique was applied to the conventional optimal beamforming structure using antenna arrays at the base station receiver in the wireless mobile communication system to get performance enhancement due to interference rejection and fading resistance ability of it. To demonstrate the benefit of proposed system, we derived output signal to interference plus noise ratio (SINR) of combined signal from all sub-array groups considering the fading effects and compared with the beamforming-only system. From the analysis and simulation results, we showed that the proposed system can provide high performance gain under Rayleigh fading channel.

Optimal Beamforming with Spherical Microphone Array (구형 마이크로폰 어레이를 이용한 최적 빔형성기법)

  • Lee, Jaehyung;Go, Yeong-Ju;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.838-839
    • /
    • 2013
  • In this paper, optimum beamforming method using spherical microphone array is presented. Beamforming method has been recognized as an important study in localizing sound sources or visualizing acoustic fields in three-dimensional space. Its geometrical arrangement of sensors in space enables to process array signal to analyze the fields of interest by steering array response in three-dimensional.

  • PDF

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Parameter Design for COBF Based on Kappa-factor Channel Model (Kappa-factor 채널모델에 기반을 둔 최적의 코드북 기반 Opportunistic Beamformer 파라미터 디자인)

  • Kang, Ji-Won;Kwon, Dong-Seung;Lee, Chung-Yong;Hwang, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.20-25
    • /
    • 2008
  • Codebook-based opportunistic beamforming (COBF) technique provides a beam selection diversity to the conventional opportunistic beamforming. In this paper, we design the random matrix and codebook for the COBF technique based on a kappa-factor channel model. Applying the proposed design to the COBF, nearly optimal beams are generated. Therefore, the COBF shows an outstanding performance without regard to the channel correlation related to the kappa-factor.

Design of Adaptive Beamforming Antenna using EDS Algorithm (EDS 알고리즘을 이용한 적응형 빔형성 안테나 설계)

  • Kim, Sung-Hun;Oh, Jung-Keun;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.56-58
    • /
    • 2004
  • In this paper, we propose an adaptive beamforming algorithm for array antenna. The proposed beamforming algorithm is based on EDS (Euclidean Direction Search) algorithm. Generally LMS algorithm has a much slower rate of convergence, but its low computational complexity and robustness make it a representative method of adaptive beamforming. Although the RLS algorithm is known for its fast convergence to the optimal Wiener solution, it still suffers from high computational complexity and poor performance. The proposed EDS algorithm has a rapid convergence better than LMS algorithm, and has a computational more simple complexity than RLS algorithm. In this paper we compared the efficiency of the EDS algorithm with a standard LMS algorithm.

  • PDF

On The Performance of a Hybrid Mode Beamforming in A Two-Cell System (두 셀 시스템 환경에서 하이브리드 모드 빔형성 성능에 대한 연구)

  • Yang, Janghoon;Chae, Hyukjin;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1133-1139
    • /
    • 2012
  • In this paper, hybrid mode beamforming (HMB) which allows simultaneous transmission of joint beamforming and disjoint beamforming is proposed. HMB is proven to be asymptotically optimal beamforming for sum rate growth. Extensive simulations show that HMB achieves nearly the same performance as joint encoding (JE) in symmetric interference channel. It is also shown that it outperforms JE in a more realistic asymmetric interference channel environment, though it still experiences some performance degradation due to power inefficiency of joint beamforming in asymmetric channel.