• Title/Summary/Keyword: optical tools

Search Result 214, Processing Time 0.032 seconds

DEM generation from KOMPSAT-1 Electro-Optical Camera Data

  • Kim, Taejung;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.325-330
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated DEM generation from EOC data and identifies some important aspects in developing a for DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work has focused on sensor modelling, stereo matching and DEM interpolation techniques. The performance of the system is shown with a SPOT stereo pair. A DEM generated from a commercial software is also presented for comparison. The paper concludes that the proposed system creates preferable results to the commercial software and suggests future developments for successful generation of DEM for EOC data.

  • PDF

Simulation and Comparison of the Lighting Efficiency for Household Illumination with LEDs and Fluorescent Lamps

  • Sun, Wen-Shing;Tien, Chuen-Lin;Pan, Jui-Wen;Yang, Tsung-Hsun;Tsuei, Chih-Hsuan;Huang, Yi-Han
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.376-383
    • /
    • 2013
  • The design of the LEDs lighting in general household illumination was proposed and compared with the fluorescent lighting in this study. Using the LED as a light source would promote energy saving lighting for household illumination purposes. We used the LightTools and DIALux software to design and simulate different standards of illuminance, different correlated color temperatures and different color rendering indices for household environments. The power consumption and efficiency of traditional illuminated light sources and an LED light source with the same standard of illuminance for lighting the household environment were analyzed and compared with each other. Finally, our results show the advantages of using white-light LEDs for lighting and household illumination.

Effects of Electroplating Condition on Micro Bump of Multi-Layer Build-Up PCB (다층 PCB 빌드업 기판용 마이크로 범프 도금에 미치는 전해조건의 영향)

  • Seo, Min-Hye;Hong, Hyun-Seon;Jung, Woon-Suk
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Micro-sized bumps on a multi-layered build-up PCB were fabricated by pulse-reverse copper electroplating. The values of the current density and brightener content for the electroplating were optimized for suitable performance with maximum efficiency. The micro-bumps thus electroplated were characterized using a range of analytical tools that included an optical microscope, a scanning electron microscope, an atomic force microscope and a hydraulic bulge tester. The optical microscope and scanning electron microscope analyses results showed that the uniformity of the electroplating was viable in the current density range of $2-4\;A/dm^2$; however, the uniformity was slightly degraded as the current density increased. To study the effect of the brightener concentration, the concentration was varied from zero to 1.2 ml/L. The optimum concentration for micro-bump electroplating was found to be 0.6 ml/L based on an examination of the electroplating properties, including the roughness, yield strength and grain size.

Age and Sex Related Changes in Corneal Thickness and Anterior Corneal Curvature in Korean Young Population with Orbscan II Topography System

  • Lee, Dong-Hee;Kim, Douk-Hoon;Park, Seung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • This study investigated, using the Orbscan II topography system, the influence of age and sex related changes on the corneal thickness and anterior corneal curvature, more specifically the fine structure of the cornea, in a Korean young population. The Orbscan II topography system is a computer-assisted slit-beam scanning technology that can map the anterior section of the cornea. The mean central corneal thickness of all subjects was $547.532{\pm}44.529\;{\mu}m$. There was no statistical difference (p>0.5) in the mean central corneal thickness between males and females. Sex and age related changes in the mean central corneal thickness had no specific statistical difference (P>0.5). There was a negative correlation between the anterior corneal curvature and the central corneal thickness in all subjects, except for the twenty year olds. However, the thickness relationship between the mean central corneal and the eight paracentral corneal thicknesses had strong statistical differences in all subjects. Also age and sex related changes in the central corneal thickness and the anterior corneal curvature in all subjects had no statistically significant difference, except from 20-26 years old (p>0.05). This information could be a suitable reference basis for future studies in the young population of Asia and for the development of examination tools for corneal refractive surgery.

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

Optical Clearing Agent Decreases Scattering of Stratum Corneum and Modulates Physical Properties of Corneocytes by Hydration (광산란 감소 물질에 의한 피부 각질층의 산란 감소 및 수화에 의한 각질세포의 물리적 특성에 대한 연구)

  • Jun, Seung-Hyun;Yeom, Jun-Seok;Ahn, Byung Jun;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Seol-Hoon;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The objective of this article is to provide analytical tools for the scattering of stratum corneum (SC) and to check whether the optical clearing agents (OCAs) could be applied in optics affecting the scattering reduction. Dark field images of tape striped corneocyte separates scattered light of the SC from others in vitro. Several optical clearing agents were tested to reduce the scattering. Physical properties of SC such as water contents, keratin configuration and volume after OCAs treatment were investigated by FT-IR and 3D laser microscope. Several reducing sugars, monomeric sugars, sugar alcohol, and hyaluronic acid, which were used as humectants in cosmetic field, also reduced scattering. However, unlike dehydration in optics, water penetrated into the keratin in SC and scattering was decreased at low concentration of OCAs. In that condition, the volume of corneocyte was increased and stiffness seemed to decrease. The analyzing of tape-stripped SC, showed the change of optical and physical properties of corneocyte by optical clearing agents. The hydration of SC layer by optical clearing agents decreased the scattering of corneocyte and thus improved the skin appearance and moisturizing effect, which are important benefits in the cosmetic field and could provide new possibility to develop skin care study targeting at SC.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Automated Bar Placing Model Generation for Augmented Reality Using Recognition of Reinforced Concrete Details (부재 일람표 도면 인식을 활용한 증강현실 배근모델 자동 생성)

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • This study suggests a methodology for automatically extracting placing information from 2D reinforced concrete details drawings and generating a 3D reinforcement placing model to develop a mobile augmented reality for bar placing work. To make it easier for users to acquire placing information, it is suggested that users takes pictures of structural drawings using a camera built into a mobile device and extract placing information using vision recognition and the OCR(Optical Character Registration) tool. In addition, an augmented reality app is implemented using the game engine to allow users to automatically generate 3D reinforcement placing model and review the 3D models by superimposing them with real images. Details are described for application to the proposed methodology using the previously developed programming tools, and the results of implementing reinforcement augmented reality models for typical members at construction sites are reviewed. It is expected that the methodology presented as a result of application can be used for learning bar placing work or construction review.

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee;Rhee, Inkyu;Jung, Yong Chae;Ha, Sumin;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.24
    • /
    • pp.90-96
    • /
    • 2017
  • We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.

Design and Characteristic Measurement of 8000 mm Large Aperture Integrating Sphere

  • Zhang, Zhao;Wan, Zhi;Li, Xiansheng;Liu, Hongxing;Sun, Jingxu;Liu, Zexun;Wang, Yamin;Ren, Jianwei;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.500-509
    • /
    • 2016
  • Integrating spheres play a central role in the radiometric calibration of remote sensors. With the development of the wide field of view (FOV) remote sensors, aperture diameters of remote sensors are becoming larger and larger. To satisfy the radiometric calibration requirements of full FOV and full aperture, an 8000mm diameter large aperture integrating sphere uniform source with a variable exit port was designed and manufactured. This integrating sphere will be used for pre-launch test and radiometric calibration of remote satellites. In this paper, optical theories were used to design the output spectral radiance. The LightTools software based on ray-tracing simulation method was used to determine the best combination and distribution of inner light sources. A spectral experiment was made to verify the spectral radiance design. To reduce the influence of longtime power-on, a new characteristic measurement method was developed to obtain the radiation characteristic of the integrating sphere, which could greatly improve the measuring efficiency. This method could also be applied to measure other large aperture uniform sources. The obtained results indicate that the spatial uniformity is 98.35%, and the angular uniformity at center position is 98.78%.