• Title/Summary/Keyword: optical temperature sensor

Search Result 373, Processing Time 0.107 seconds

Characteristics of a-Si:H Films for Contact-type Linear Image Sensor (밀착형 선형 영상감지소자를 위한 a-Si:H막의 특성)

  • 오상광;박욱동;김기완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.11
    • /
    • pp.894-901
    • /
    • 1991
  • Contact-type linear image sensors have been fabricated by means of RF glow discharge decomposition method of silane and hydrogen mixtures. The dependences of the electrical and optical properties of these sensor on thickness, RF power, substrate temperature and ambient gas pressure have been investigated. the ITO/i-a-Si:H/Al structure film shows photosensitivity of 0.85 and photocurrent to dark current ratio ($I_{ph}/I_{d}$) of 150 at 5V bias voltage under 200${\mu}W/cm^[2}$ red light intensity. Under 200${\mu}W/cm^[2}$ green light intensity, the ratio is 100. In order to investigate photocarrier transport mechanism and to obtain ${\mu}{\gamma}$ product we have measured the I-V characteristics of these sensors favricated with several different deposition parameters under various light sources. The linear inage sensor for document reading has been operated under reverse bias condition with green light source, resulting in ${\mu}{\gamma}$ product of about 1.5$[\times}10^{-9}cm^{2}$/V.

  • PDF

Multipoint Pressure-detection Sensors using Microbanding-induced Long-period Fiber Gratings (마이크로밴딩 장주기 광섬유 격자를 이용한 다중위치 압력감지 센서)

  • Sohn, Kyung-Rak;Choi, Young-Gill;Jang, Se-In;Choi, Jae-Yun;Shim, Joon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.449-454
    • /
    • 2006
  • We present a pressure sensor based on the mechanically induced long-period fiber gratings (LPFG) for detecting the multi-location strain variation. The theoretical analysis is performed using a graphic method for a weakly guiding step-index fiber. The calculated results are in good agreement with the experimental results. In this study, from the fact that the optical parameters of a single-mode fiber slightly differ from manufacturing company to manufacturing company, the multipoint pressure-detection sensor systems composed two identical LPFGs are realized. When the pressure is applied two LPFG sensors at once, the resonance peaks are separated as much as about 40 nm. These types of sensor systems are well suited as a multipoint monitoring of strain or temperature in the ship or the smart structure.

Analysis of Electromagnetic Radiation Hazard for Electro-explosive Device Using Fiber Optic Sensor (광섬유 센서를 이용한 EED 전자파 방사 위해도 분석)

  • 김응조;윤기은;윤태훈;김재창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.725-734
    • /
    • 1998
  • When the EED is exposed to the high power radiation, it is possible to verify systems survivability through measuring the induced current of EED. The usual method of performing a system level test is to replace the EED's with modified units from which the explosive charge has been removed and replaced with the fiber optic sensor. The thermal transient test was performed to obtain the temperature vs current characteristic curve for optical sensor installed in EED. The currents measured when the system is exposed to a known EME are compared to the proposed specfication about the EED and a decision is made on whether system is safe or not.

  • PDF

Experimental Study for Establishment of Long-term Monitoring System using Fiber Optical Sensor for Pipeline System for Waste Transportation (광섬유센서를 이용한 쓰레기 이송관로의 장기 계측시스템 구축을 위한 실험적 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • Recently, the pipeline system for waste transportation has been increasingly constructed as new solution for the waste collection and disposal system by constantly increasing domestic waste which issued as social problem. The pipeline system is constructed through long distance, so proper long-term monitoring system is necessary which available to detect the damage location for the effective maintenance. In this paper, the experimental study is carried out to evaluate the applicability of optical strain gauge sensor based on FBG for the long-term monitoring system. Three test parameters such as pressure leaking, blockage and deformation are considered as typical damages for real-scale pipeline test specimen. In order to measure flexural and volumetric strain and temperature, three FBG sensors are installed at each monitoring sections. From the test results, this study suggested effective methods of sensor installation and arrangement. Also the sensor spacing for the design of monitoring system using FBG sensor is derived by the correlation of distances from deformation between sensor responses.

Light Propagation in a Strained and Heated Crystal (변형 및 온도 변화 존재시 단결정에서의 빛의 거동)

  • 조동원;김기수
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1994
  • Light propagation in an anisotropic crystal in the presence of strains and temperature change is investigated. This phenomenon appears in an embedded optical films sensor inside the structure or in an optical on the substrate for optical devices. The refractive indices which represent the light propagation in an anisotopic crystal are calculated and the changes of these refractive indices in the presence of strains and tepmerature change are also calculated. The calculations for the light propagation. In an isotropic medium with the simplified model are performed and the results are compared with devious investigators.

  • PDF

Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors (삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구)

  • 김승택;전흥재;최흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Optical properties of ZnS ceramics by hot press stack sintering process (고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.

Laser Based Temperature Measurement of Rotating Disk Using Thermocolor (서모컬러를 이용한 회전 디스크의 레이저 온도 측정)

  • Na, Wonhwi;Yoo, JaeChern
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • In this paper, we proposed a laser-based non-contact temperature measuring method for high speed rotating polycarbonate (PC) disk using transparency change of thermocolor. The thermocolor has abilities to change color and transparency due to a change in temperature. The thermocolor is applied on one side of polyvinylidene fluoride (PVDF) membrane. The thermocolor applied membrane is attached to inside of reaction chamber in disk. An optical system consisted of a laser beam radiator and a laser photometer is installed. Laser is irradiated at the bottom side of disk and the transmitted laser beam is detected by the laser photometer at the opposite side of disk. During the disk is rotating, laser is irradiated and detected simultaneously. The laser photometer senses the transmitted laser power and generates voltage as output. The temperature of disk can be detected during the disk is rotating up to 3000 RPM.