• Title/Summary/Keyword: optical sensitivity

Search Result 875, Processing Time 0.023 seconds

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

Implementation of the Real-time Measurement System of Receiver Sensitivity for a Laser Range Finder (레이저 거리 측정기용 광 검출기 수신 감도 실시간 측정 시스템 구현)

  • Lee, Young-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.108-111
    • /
    • 2016
  • We propose the method for measuring sensitivity of optical receiver of a long-range laser range finder in real-time. The sensitivity of the detector can be calculated using the detected voltage of the reference sensor, the area of the reference sensor and the transmittance ratio of neutral density filters. To evaluate the performance of the proposed method, we implemented a system and performed experiments. As a result, this system can be measured from 2nW to $113{\mu}W$. With this system, we measured the sensitivity of 37nW and 7nW with PIN PD and APD sample, respectively. This system has the advantage for the performance test of an optical sensor module in the long-range laser range finder.

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

An Analysis of Receiving Sensitivity of PIN Receiver for Optical Communication System (광통신시스템의 PIN 수신기 수신감도 해석)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2272-2278
    • /
    • 2011
  • It is essential to various evaluate about statistic character of the signal and additional noise for optimization of the optical communication system. We expressed various error probability with the m which was bandwidth and a bit numerical function and carried out performance evaluation of a PIN receiver. This research analyzed the receiving sensitivity of the PIN receiver and verified reception sensitivity through computer simulation in the optical communication system. As a result, the receiving sensitivity for PIN receiver are $9.2{\times}10^4$ photon/bit for given error probability.

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity (이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계)

  • Yoon, Jiyoung;Lee, Junyeop;Do, Namgon;Jung, Daewoon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

A Study of the Dependence on Incidence Angle of the Sensitivity of an Extraordinary Optical Transmission Sensor (특이 광 투과 센서에서 민감도의 입사각 의존성 연구)

  • Kwon, Yongjae;Lee, Seunghun;Kim, Taeyeon;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.126-132
    • /
    • 2021
  • In this research, we have investigated the sensitivity of an extraordinary optical transmission sensor depending on the angle of incident light. Three types of light, including a collimated beam and focused beams (4× and 10×), were designed for the sensor system. To compare the sensitivity of the sensor, we measured transmittance spectra using deionized water (n=1.333) and refractive-index-matching oils (n=1.360 and 1.380). Those spectra were analyzed in terms of redshifting of the peak, so that we could determine the sensitivity. The sensitivity tended to increase when the collimated beam is used on the system, and we have concluded that the sensitivity could be affected by the incidence angle on an extraordinary optical transmission sensor.

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

A Power-adjustable Fully-integrated CMOS Optical Receiver for Multi-rate Applications

  • Park, Kangyeob;Yoon, Eun-Jung;Oh, Won-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-627
    • /
    • 2016
  • A power-adjustable fully-integrated CMOS optical receiver with multi-rate clock-and-data recovery circuit is presented in standard 65-nm CMOS technology. With supply voltage scaling, key features of the optical receiver such as bandwidth, power efficiency, and optical sensitivity can be automatically optimized according to the bit rates. The prototype receiver has −23.7 dBm to −15.4 dBm of optical sensitivity for 10−9 bit error rate with constant conversion gain around all target bit rates from 1.62Gbps to 8.1 Gbps. Power efficiency is less than 9.3 pJ/bit over all operating ranges.

Highly Sensitive Optical-fiber Humidity Sensor Based on Nafion-PVA Sol-gel

  • Ning, Wang;Yuhao, Li;Xiaolei, Yin;Wenting, Liu;Shiqi, Liu; Xuwei, Zhao; Yanxi, Zhong;Liang, Xu
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • A highly sensitive optical-fiber humidity sensor is demonstrated in this paper. By using Nafion-PVA sol-gel and single-mode optical fibers, the Fabry-Perot humidity sensor is easily fabricated. In the humidity range of 29%-72%, humidity-response experiments are carried out with a cycle of rising and falling humidity to investigate humidity-response characteristics. The experimental results show 2.25 nm/%RH sensitivity and a 0.9997 linear correlation coefficient, with good consistency. The changes in optical-path difference (OPD) and free spectral range (FSR) with humidity are also discussed. The humidity sensitivities of a typical sensor are 80.3 nm/%RH (OPD) and 0.03 nm/%RH (FSR). Furthermore, many humidity sensors with different Nafion-PVA sol-gel concentration and initial cavity length are experimentally investigated for humidity response. The results show that the sensitivity increases with higher Nafion ratio of the Nafion-PVA sol-gel. The influence of changing cavity length on sensitivity is not obvious. These results are helpful to research on optical-fiber humidity sensors with good performance, easy fabrication, and low cost.