• Title/Summary/Keyword: optical ground station

Search Result 31, Processing Time 0.019 seconds

Experiments of Free-Space Optical Communication for Optical Ground Station (광통신 지상국 구축을 위한 자유공간 광통신 실험)

  • Taewoo Kim;Wonseok Kang;Sang Hoon Oh;Yong-sun Park;Jung-Hoon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • As the limitations of conventional radio communications between satellites and the ground become apparent, various experiments are being conducted around the world to overcome them with space laser communication. In this study, we address the development of our own optical communications terminal (OCT) and optical ground station (OGS) and the experiments of free-space optical communication (FSOC) using them. Using a 30 mm-diameter OCT and a 250 mm-diameter portable OGS telescope, as well as commercial 10 Gbps SFP+ modules and media converters, we successfully transmitted and received 4K high-definition multimedia interface (HDMI) signals through 1,550 nm optical laser beam. The transmission and reception distances of the experiment were 3, 9, and 20 km, respectively, and the received signal strength at each distance was +6.1, -2.8, and -10.9 dBm, respectively. It was demonstrated that the 4K HDMI video lasted for over 10 minutes.

TELEMETRY TIMING ANALYSIS FOR IMAGE RECONSTRUCTION OF KOMPSAT SPACECRAFT

  • Lee, Jin-Ho;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The KOMPSAT(Korea Multi-Purpose SATellite) has two optical imaging instruments called EOC(Electro-Optical Camera) and OSMI (Ocean Scanning Multispectral Imager). The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transfeered from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time) which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  • PDF

Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite

  • Lim, Hyung-Chul;Park, Jong Uk;Choi, Mansoo;Choi, Chul-Sung;Choi, Jae-Dong;Kim, Jongah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Satellite optical communication has gained significant attention owing to its many quality features (e.g., a larger bandwidth, license free spectrum, higher data rate, and better security) compared to satellite microwave communication. Various experiments have been performed during many space missions to demonstrate and characterize inter-satellite links, downlinks, and uplinks. Korea has also planned to establish an experimental communication system using a geostationary earth orbit (GEO) satellite and the Geochang station as an optical ground station for low Earth orbit (LEO)-to-ground optical relay links. In this study, the performance of inter-satellite communication links and downlinks was investigated for the new Korean experimental communication system in terms of link margin, bit error rate (BER), and channel capacity. In particular, the performance of the inter-satellite links was analyzed based on the receiving apertures and the transmitting power, while that of the downlink was analyzed in terms of atmospheric turbulence conditions and transmitting power. Finally, we discussed two system parameters of receiving aperture and transmitting power to meet the three criteria of link margin, BER, and channel capacity.

Aerosol Optical Thickness of the Yellow Sand from Direct Solar Radiation at Anmyon Island during the Spring of 1998 (안면도에서1998년 봄철에 관측된 황사의 광학적 특징)

  • Shin, Do-Shick;Kim, San;Kim, Jeong-Sik;Cha, Ju-Wan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.739-746
    • /
    • 1999
  • The spectral aerosol optical thickness of vertical air columns were measured by a ground-based multi-channel sunphotometer at the BAPMoN station(36$^{\circ}$31'N, 126$^{\circ}$19'E) in Anmyon Island, Korea, from 1 March 1998 to 31 May 1998. We used the data of three yellow sand and two clear sky days in order to analyze the temporal variations in aerosol optical thickness at the station. The basic aerosol optical thickness generally represented smaller than 0.3 in a clear sky and the range 0.5 to 1.1 in yellow sand. Especially the aerosol optical thickness represented larger than 0.9 in a heavy yellow sand. It was found that the aerosol optical thickness of yellow sand was highly increased in comparison with the case of a clear sky andparticles larger than 0.5$mu extrm{m}$ were also increased in the spectral distribution of aerosol volume during yellow sand. Consequently the spectral variations in tropospheric aerosol caused by yellow sand were determined by the number concentration of particles larger than 0.5${\mu}{\textrm}{m}$ and the magnitude of yellow sand.

  • PDF

OPTICAL PROPERTIES OF ASIAN DUST ESTIMATED FROM GROUND BASED POLARIZATION MEASUREMENTS

  • KUSAKA Takashi;NISHISAKA Tomoya
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.385-387
    • /
    • 2005
  • Polarimetric measurements of the sky radiation by the PSR-I000, which is the multi-spectral polarimeter developed by the Opt Research Corporation and has the same wavelength regions (443nm, 490nm, 565nm, 670nm, 765nm and 865nm) as the ADEOSII/POLDER sensor, have been carried out at the ground station in Kanazawa city, Japan from March to May. First of all, the wavelength dependency of degrees of polarization is examined and it is shown that degrees of polarization measured under the hazy dust cloud are lower than those measured in the clear sky and decrease as the wavelength increases. Next, a new method for estimating optical properties, such as the optical thickness, the number size distribution and the refractive index, of the Asian dust and the ground reflectance from degrees of polarization measured by PSR-I000 is described. Finally, this method is applied to polarization data acquired on April 15,2002. As a result, it is shown that our estimation algorithm provides a good result.

  • PDF

Spatial Characteristics of Low Meteorological Visibility over Hongkong and Statistical Retrieval from Satellite Data

  • Fei, HUANG;Jun-Ping, QIAN;Zu-Qiang, CUI;Zhi-Hong, ZHENG;Zhi-Jun, WU
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1261-1263
    • /
    • 2003
  • Based on twelve observational stations low meteorological visibility (LMV) data during November 2002 to April 2003, the spatial distribution of LMV over Hongkong area (113.8$^{\circ}$ E-114.4$^{\circ}$ E, 22.1$^{\circ}$ N-22.4$^{\circ}$ N) is studied, using a PCA method. Optical spectrum of NOAA-16 associated with LMV shows that the significant effect factors correlated with LMV in the leading mode are the difference or rate between the visible and near-IR channels and single visible channel. A successful retrieval of LMV is done and a regression equation with a multiple correlation coefficient of 0.67 is obtained.

  • PDF

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

Development of High Speed Satellite Data Acquisition System

  • Choi, Wook-Hyun;Park, Sang-Jin;Seo, In-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.280-282
    • /
    • 2003
  • The downlink data rates of the space-born payloads such as high-resolution optical cameras, synthetic aperture radars (SAR) and hyper-spectral sensors are being rapidly increased. For example, the image transmission rates of KOMPSAT-2 MSC(Multi-Spectral Camera) is 320Mbps even if on-board image compression scheme is used.[1] In the near future, the data rates are expected to be a level 500${\sim}$600Mbps because the required resolution will be higher and the swath width will be increased. This paper describes many techniques they enable 500Mbps data receiving and archiving system.

  • PDF

An optical design of a high resolution earth observation camera for small satellites (소형 위성용 고해상도 광학카메라 광학설계)

  • 이준호;김용민;이응식;유상근;김이을;최영완;박동조
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • A space-borne earth observation camera is an electro-optical instrument to measure the characteristics of the earth's surface, and to transmit the measured data to a ground station(s). The specifications of a space-borne camera, such as resolution, swath width and observation bands, are determined by its mission objectives. This paper lists some specifications of a camera suitable for small satellite and then presents an optical design, with the results of tolerancing analysis, which satisfies the given specifications. tions.

  • PDF

Link Availability of Satellite-to-ground Free-space Optical Communication Systems in South Korea (우리나라 위성-지상 하향 무선 광통신 시스템의 링크 가용성)

  • Kim, Gyuwan;Kim, Daeho;Vuong, V. Mai;Kim, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • We analyze the link availability of satellite-to-ground free-space optical (FSO) communication systems in South Korea. Using ten-year meteorological data for five major cities (Seoul, Busan, Daegu, Daejeon, and Gwangju), we theoretically predict the link availability from the power losses induced by absorption, scattering, aerosols, and scintillation in the atmospheric channel. For accurate but conservative estimation of the link availability determined by cloud cover, we propose a loss model based on the maximum value of cloud droplet concentration. The results show that the link availability ranges from 45% to 70% when a single ground station is placed in a major city in South Korea and a 20-dB link budget is allocated for atmospheric loss. However, the availabilities improve to 90% and 97% when 3- and 5-site diversities are employed, respectively.