• Title/Summary/Keyword: optical efficiency

Search Result 1,952, Processing Time 0.029 seconds

Study on Optical Characteristics of Organic Light-emitting Diodes Using Two Fluorescence Dopants in Single Emissive Layer (2개의 형광 도판트를 적용한 단일발광층 유기발광소자의 광학적 특성 연구)

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • Organic light-emitting diodes (OLEDs) with single emissive layer structures using two fluorescent dopants were fabricated and the device was composed of ITO / NPB ($700{\AA}$) / MADN : C545T - 1.0% : DCJTB - 0.3% ($300{\AA}$) / Bphen ($300{\AA}$) / LiF ($10{\AA}$) /Al ($1,000{\AA}$). C545T and DCJTB were functioned as green fluorescent dye and red fluorescent dye under MADN as host material. Concentrations of C545T and DCJTB was changed in emissive layer of MADN. Optimized OLED device using two fluorescence dopants shows emission efficiency of 8.42 cd/A and luminescence of 3169 cd/$m^2$at 6 V with CIE color coordinate, (0.43, 0.50). Electroluminescence of optimized OLED showed two peak at 500 and 564 nm according to C545T and DCJTB. These results indicate that F$\ddot{o}$ster energy transfer energy transfer was from MADN to C545T and rather than to DCJTB continuously.

Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells (스프레이코팅법에 의한 패시베이션 박막이 플렉시블 CIGS 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Kim, Ki Hong;Chang, Young Chul;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • In order to protect the solar cells from the moisture and oxygen, we evaluated the electrical and optical properties for the $Cu(In,Ga)Se_2$ (CIGS) solar cells which were prepared by the spray coating method. Generally, the EVA (ethylene-vinyl acetate) films are laminated to protect the CIGS flexible solar cells, which results in a high cost process due to complicated devices. In this study, we tried to prepare the protection layers of the flexible CIGS flexible solar cells by using spray coating method instead of conventional laminating films in order to reduce the device weight as well as the process time. The CIGS solar cells with spray coating method showed an enhanced efficiency than the before treated sample (2.77% to 2.93%) and relatively proper water vapor transmission rate of the solar cells about 62.891 gm/[$m^2-day$].

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Large-Area Synthesis of High-Quality Graphene Films with Controllable Thickness by Rapid Thermal Annealing

  • Chu, Jae Hwan;Kwak, Jinsung;Kwon, Tae-Yang;Park, Soon-Dong;Go, Heungseok;Kim, Sung Youb;Park, Kibog;Kang, Seoktae;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.2-130.2
    • /
    • 2013
  • Today, chemical vapor deposition (CVD) of hydrocarbon gases has been demonstrated as an attractive method to synthesize large-area graphene layers. However, special care should be taken to precisely control the resulting graphene layers in CVD due to its sensitivity to various process parameters. Therefore, a facile synthesis to grow graphene layers with high controllability will have great advantages for scalable practical applications. In order to simplify and create efficiency in graphene synthesis, the graphene growth by thermal annealing process has been discussed by several groups. However, the study on growth mechanism and the detailed structural and optoelectronic properties in the resulting graphene films have not been reported yet, which will be of particular interest to explore for the practical application of graphene. In this study, we report the growth of few-layer, large-area graphene films using rapid thermal annealing (RTA) without the use of intentional carbon-containing precursor. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2~3 nm) carbon- and oxygen-containing compounds on a nickel surface and high-temperature annealing of the nickel samples results in the formation of few-layer graphene films with high crystallinity. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time and the resulting films have a limited thickness less than 2 nm even for an extended RTA time. The transferred films have a low sheet resistance of ~380 ${\Omega}/sq$, with ~93% optical transparency. This simple and potentially inexpensive method of synthesizing novel 2-dimensional carbon films offers a wide choice of graphene films for various potential applications.

  • PDF

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

A Study of the Fiber Fuse in Single-mode 2-kW-class High-power Fiber Amplifiers (단일 모드 2 kW급 고출력 광섬유 증폭기 내의 광섬유 용융 현상에 관한 연구)

  • Lee, Junsu;Lee, Kwang Hyun;Jeong, Hwanseong;Kim, Dong Jun;Lee, Jung Hwan;Jo, Minsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • In this paper, we experimentally investigate the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers, depending on the cooling method at the splicing point. We measured the temperature of the splicing point between the pump-signal combiner and gain fiber as a function of laser output power. The temperature of the splicing point increased from 20 to 32℃ with a slope of 0.01℃/W, up to 1.2 kW of laser output power. At higher powers the temperature of the splicing point increased dramatically, with a slope of 0.08℃/W. After that, the fiber amplifier was destroyed during operation at 1.96 kW of output power by fiber fuse. The bullet shape, a common feature of fiber fuse, was observed in the damaged passive fiber core of the pump-signal combiner. Later, we adopted an improved water-cooled cold plate to increase the cooling efficiency at the splicing point, and investigated the laser output power. The temperature at the splicing point was 35.8℃ with a temperature-rise slope of 0.007℃/W at the maximum output power of 2.05 kW. The beam quality M2 was measured to be less than 1.3, and the output beam's profile was a stable Gaussian shape. Finally, neither fiber fuse nor mode instability was observed in the fiber amplifier at the maximum output power of 2.05 kW.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method (초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구)

  • Lee, Dong-Hun;Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.38-48
    • /
    • 2021
  • In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

High-power Yb Fiber Laser with 3.0-kW Output (3.0 kW 고출력 발진 단일 모드 Yb 광섬유 레이저)

  • Park, Jong Seon;Park, Eun Ji;Oh, Ye Jin;Jeong, Hoon;Kim, Ji Won;Jung, Yeji;Lee, Kangin;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.147-152
    • /
    • 2021
  • We report high-power continuous-wave operation of a Yb-doped fiber laser at 1070 nm, pumped by high-power laser diodes at 976 nm. Based on theoretical calculation of the stimulated Raman scattering and temperature distribution in the fiber, we construct a bidirectionally pumped Yb-fiberlaser system incorporating a pair of fiber Bragg gratings and a cladding light stripper. The fiber laser yields 3.0 kW of continuous-wave output at 1070 nm in a diffraction-limited beam with M2 ≈ 1.26 for 4.1 kW of incident pump power, corresponding to a slope efficiency of 81.5%. The prospects for further power scaling are discussed.

High-power Operation of a Yb Fiber Laser at 1018 nm (1018 nm 파장의 고출력 Yb 광섬유 레이저)

  • Oh, Ye Jin;Park, Hye Mi;Park, Jong Seon;Park, Eun Ji;Kim, Jin Phil;Jeong, Hoon;Kim, Ji Won;Kim, Tae Hyoung;Jeong, Seong Mook;Kim, Ki Hyuck;Yang, Hwan Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • High-power continuous-wave operation of a Yb-doped double-clad fiber laser at 1018 nm, pumped by high-power diode lasers at 976 nm, is reported. Based on numerical calculation of the gain and laser signal power along the length of the Yb fiber, it is found that robust operation at 1018 nm can be achieved for a high Yb3+-ion excitation density greater than 11.5%, accompanied by high suppression of the feedback from the fiber's end facet. The Yb fiber laser constructed in house yields 626 W of continuous-wave output at 1018 nm for 729 W of incident pump power, corresponding to a slope efficiency of 86.6%. The prospect for power scaling is considered.