• Title/Summary/Keyword: optical disease

Search Result 129, Processing Time 0.024 seconds

Angular Displacement Measurement Using Optical Sensor (광학센서를 이용한 관절운동각도 측정)

  • Jung, Gu-In;Kim, Ji-Sun;Hur, Dong-Hun;Yu, Hwan-Dong;Lim, Sung-Hwan;Choi, Ju-Hyeon;Lee, Jeong-Hwan;Eom, Gwang-Moon;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1959-1965
    • /
    • 2011
  • Measuring the movement of joint angle of human body is very important clinically. Human joint angle displacement can be used to evaluate the degree of disease and disability. Also, we can determine the rehabilitation process with angular information. Conventional methods for measuring angular displacement are many weakness. The purpose of this study is to overcome the limitations of existing equipments by using optical method. For this reason, optical sensor system was used to correlate detected light signal with joint angle. Experimental results of the applied joint model in this study showed that joint angular displacement can be measured by optical signals. The suggested method is simple, durable, small, lightweight, convenient, and cost effective.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Clinical Applications of Intracoronary OCT (Invited Paper) (심혈관 OCT의 임상적 응용)

  • Ha, Jinyong;Kim, Jung-Sun;Hong, Myeong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The most common cause of a heart attack is known as coronary artery disease, which narrows the arteries and reduces the blood flow to the heart. To treat coronary artery stenosis, percutaneous coronary intervention (PCI) (a nonsurgical procedure to install a stent, which holds the artery wall open) is performed. Intracoronary optical coherence tomography (OCT) is a catheter-based, invasive optical imaging system. To determine whether PCI is appropriate, and to perform stent evaluation in a catheterization laboratory, OCT examinations are carried out. This review details the fundamental principles and technological status of intracoronary OCT imaging, and discusses the ongoing clinical applications to determine the benefits of OCT-guided PCI.

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

The Application of Optical Coherence Tomography in the Diagnosis of Marssonina Blotch in Apple Leaves

  • Lee, Changho;Lee, Seung-Yeol;Jung, Hee-Young;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • In this study we investigate the use of 2D and 3D scanning optical coherence tomography (OCT) technology for use in apple blotch diagnosis. In order to test the possible application of OCT as a detection tool for apple trees affected by Marssonina coronaria, we conducted several experiments and compared the results from both healthy and infected leaves. Using OCT, we found several distinctive features in the subsurface boundary regions of both the diseased and healthy leaves. Our results indicate that leaves from diseased trees, while still appearing healthy, can be affected by M. coronaria. The A-scan analysis method confirmed that the boundaries found under the subsurface layers can be faint. This shows that M. coronaria can exert its influence on entire apple trees (as opposed to only on leaves with lesions) once it infects healthy trees. Our results indicate that OCT can be used as a noninvasive tool for the diagnosis of fungal disease in apple trees. Microscopic imaging results, performed as a histological study for comparison, correlated well with the OCT results.

The study on Biomaterial Properties using the Optical Coefficient (광학계수를 이용한 생체물질의 특성에 관한 연구 (암조기진단을 위한 전단장치의 개발을 위한 기초연구))

  • 임현수;김부길;두재균
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 1998
  • In this paper, basic study of diagnostic device development for early detection of cancer, we present the optical property measurements of 12 histologically classified biological tissue and blood specimens in order to determine whether significant optical contrast exists for detection of disease(cancer). In vitro, optical properties of each 630nm, 660nm, 780n, 880nm and 940nm shows consistent changes in effective absorbtion coefficients, ${\mu}$$\_$${\alpha}$/ with tissue classification of pig an chicken and human blood according to the 27.3%, 35.4%, 45.6% and 59.1% of HCT. We found differences in optical properties at each of specific wavelengths and histologically classified biological tissue.

  • PDF

Construction of an PFT database with various clinical information using optical character recognition and regular expression technique

  • Park, Man Young;Park, Rae Woong
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.55-60
    • /
    • 2017
  • The pulmonary function test (PFT) is an essential data source for evaluating the effect of drugs on the lungs or the status of lung function. However, the numeric values of PFT cannot be easily used for clinical studies without labor-intensive manual efforts, because PFTs are usually recorded as image files. This study was aimed at constructing a de-identified, open-access PFT database with various clinical information. For constructing the PFT database, optical character recognition (OCR), regular expression, and the parsing technique were used to extract alphanumeric data from the PFT images in a Korean tertiary teaching hospital. This longitudinal observational database contains 413,000 measurements of PFT from 183,000 patients.

Ocular manifestations in a patient with de novo Fabry disease

  • Lee, You Hyun;Shim, Kyu Young;Park, Sung Bae;Kim, Yu Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.232-235
    • /
    • 2018
  • Fabry disease (FD) is an X-linked, recessively inherited, rare, progressive, disorder of glycosphingolipid metabolism affecting multiple organs resulting in organ dysfunction. It is rare to find only one FD affected subject with a de novo mutation. Here we report a case of a 41-year-old Asian male diagnosed with de novo FD. Comprehensive ophthalmological evaluation was performed using slit lamp, color fundus photography, optical coherence tomography, fluorescein angiography, and indocyanine green angiography. On slit lamp examination, cornea verticillata and slightly tortuous, and aneurysmal dilatation of inferior bulbar conjunctival vessels were observed. Other imaging modalities showed unremarkable findings. Cornea verticillata and inferior bulbar conjunctival vascular abnormalities may be detected earlier than other ocular abnormalities in de novo FDs like hereditary FDs.

Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation

  • Cho, Ahra;Yeon, Chanmi;Kim, Donghyeon;Chung, Euiheon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.