DOI QR코드

DOI QR Code

Clinical Applications of Intracoronary OCT (Invited Paper)

심혈관 OCT의 임상적 응용

  • Ha, Jinyong (Department of Optical Engineering, Sejong University) ;
  • Kim, Jung-Sun (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Hong, Myeong-Ki (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine)
  • 하진용 (세종대학교 광전자공학과) ;
  • 김중선 (연세대학교 의과대학 세브란스 심장혈관병원) ;
  • 홍명기 (연세대학교 의과대학 세브란스 심장혈관병원)
  • Received : 2014.12.29
  • Accepted : 2015.01.26
  • Published : 2015.02.25

Abstract

The most common cause of a heart attack is known as coronary artery disease, which narrows the arteries and reduces the blood flow to the heart. To treat coronary artery stenosis, percutaneous coronary intervention (PCI) (a nonsurgical procedure to install a stent, which holds the artery wall open) is performed. Intracoronary optical coherence tomography (OCT) is a catheter-based, invasive optical imaging system. To determine whether PCI is appropriate, and to perform stent evaluation in a catheterization laboratory, OCT examinations are carried out. This review details the fundamental principles and technological status of intracoronary OCT imaging, and discusses the ongoing clinical applications to determine the benefits of OCT-guided PCI.

심혈관 질환은 심장마비의 가장 흔한 원인으로 관상동맥의 협착으로 심근에 산소와 영양분을 제대로 공급하지 못하게 되어 발생하게 된다. 이를 내과적으로 치료하기 위해 심혈관 중재술이 시행되는데 이때 스텐트 삽입 여부, 위치, 크기, 그리고 스텐트 삽입 후 혈관벽과의 밀착 여부를 평가하기 위해 혈관 내 광간섭단층촬영(OCT, optical coherence tomography) 내시경 진단검사를 시행한다. 본 논문에서는 이러한 심혈관 OCT 원리와 기술 동향, 그리고 실제 의료현장에서 심혈관 OCT의 임상적 응용 및 활용가치를 소개하고자 한다.

Keywords

References

  1. R. Lozano, M. Naghavi, K. Foreman, et al., "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010," Lancet 380, 2095-2128 (2012). https://doi.org/10.1016/S0140-6736(12)61728-0
  2. G. S. Mintz, "Clinical utility of intravascular imaging and physiology in coronary artery disease," J. Am. Coll. Cardiol. 64, 207-222 (2014). https://doi.org/10.1016/j.jacc.2014.01.015
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). https://doi.org/10.1364/OE.11.000889
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
  6. H. C. Lowe, J. Narula, J. G. Fujimoto, I.-K. Jang, "Intracoronary optical diagnostics current status, limitations, and potential," J. Am. Coll. Cardiol. Cardiovasc. Interv. 4, 1257-1270 (2011). https://doi.org/10.1016/j.jcin.2011.08.015
  7. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. van der Steen, R. Huber, and G. van Soest, "Intravascular optical coherence tomography imaging at 3200 frames per second," Opt. Lett. 38, 1715-1717 (2013). https://doi.org/10.1364/OL.38.001715
  8. H. S. Cho, S.-J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W.-Y. Oh, "High frame-rate intravascular optical frequency-domain imaging in vivo," Biomed. Opt. Express 5, 223-232 (2014). https://doi.org/10.1364/BOE.5.000223
  9. R. Ross, "Atherosclerosis-an inflammatory disease," New England Journal of Medicine 340, 115-126 (1999). https://doi.org/10.1056/NEJM199901143400207
  10. A. V. Finn, M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani, "Concept of vulnerable/unstable plaque," Arteriosclerosis, Thrombosis, and Vascular Biology 30, 1282-1292 (2010). https://doi.org/10.1161/ATVBAHA.108.179739
  11. N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, and J. J. Koolen, "Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenosis," New England Journal of Medicine 334, 1703-1708 (1996). https://doi.org/10.1056/NEJM199606273342604
  12. N. H. Pijls, V. Klauss, U. Siebert, E. Powers, K. Takazawa, W. F. Fearon, J. Escaned, Y. Tsurumi, T. Akasaka, H. Samady, and B. De Bruyne, "Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry," Circulation 105, 2950-2954 (2002). https://doi.org/10.1161/01.CIR.0000020547.92091.76
  13. J. E. Sousa, M. A. Costa, and A. Abizaid, "Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasoundstudy," Circulation 103, 192-195 (2001). https://doi.org/10.1161/01.CIR.103.2.192
  14. S. Garg and P. W. Serruys, "Coronary stents: looking forward," J. Am. Coll. Cardiol. 56, S43-S78 (2010). https://doi.org/10.1016/j.jacc.2010.06.008
  15. T. F. Luscher, J. Steffel, F. R. Eberli, M. Joner, G. Nakazawa, F. C. Tanner, and R. Virmani, "Drug-eluting stent and coronary thrombosis biological mechanisms and clinical implications," Circulation 115, 1051-1058 (2007). https://doi.org/10.1161/CIRCULATIONAHA.106.675934
  16. G. Guagliumi, V. Sirbu, G. Musumeci, R. Gerber, G. Bondi-Zoccai, H. Ikejima, E. Ladich, N. Lortkipanidze, A. Matiashvili, O. Valsecchi, R. Virmani, and G. W. Stone, "Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging," J. Am. Coll. Cardiol. Intv. 5, 12-20 (2012).
  17. J. Ha, B. K. Kim, J. S. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "Assessing neointimal coverage after DES implantation by 3D OCT," J. Am. Coll. Cardiol. Img. 5, 852-853 (2012). https://doi.org/10.1016/j.jcmg.2012.01.021
  18. J. S. Kim, J. Ha, B. K. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "The relationship between post-stent strut apposition and follow-up strut coverage assessed by a contour plot optical coherence tomography analysis," JACC Cardiovasc. Interv. 7, 641-651 (2014).
  19. V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. Bochove, R. J. Geuns, H. M. Garcia-Garcia, and P. W. Serruys, "Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application," Eur. Heart J. 34, 875-885 (2013). https://doi.org/10.1093/eurheartj/ehr409
  20. J. Ha, J. S. Kim, G. S. Mintz, B. K. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "3D OCT versus FFR for jailed side-branch ostial stenosis," JACC Cardiovasc. Imaging 7, 204-205 (2014). https://doi.org/10.1016/j.jcmg.2013.06.011
  21. A. M. Fard, P. Vacas-Jacques, E. Hamidi, H. Wang, R. W. Carruth, J. A. Gardecki, and G. J. Tearney, "Optical coherence tomography-near infrared spectroscopy system and catheter for intravascular imaging," Opt. Express 21, 30849-30858 (2013). https://doi.org/10.1364/OE.21.030849
  22. H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. A. Jaffer, and G. J. Tearney, "Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo," Nat. Med. 17, 1680-1684 (2011). https://doi.org/10.1038/nm.2555
  23. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," International Journal of Cardiology 107, 400-409 (2006). https://doi.org/10.1016/j.ijcard.2005.11.036
  24. S. Liang, T. Ma, J. Jing, X. Li, J. Li, K. Kirk Shung, Q. Zhou, J. Zhang, and Z. Chen, "Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging," Opt. Lett. 39, 6652-6655 (2014). https://doi.org/10.1364/OL.39.006652
  25. M. I. Papafaklis, C. V. Bourantas, V. Farooq, R. Diletti, T. Muramatsu, Y. Zhang, D. I. Fotiadis, Y. Onuma, H. M. Garcia Garcia, L. K. Michalis, and P. W. Serruys, "In vivo assessment of the three-dimensional haemodynamic microenvironment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: fusion of frequency domain optical coherence tomography and angiography," ahead of print, EuroIntervention (2013).