DOI QR코드

DOI QR Code

Measurement of Aerosols and Ice Clouds Using Ellipsometry Lidar

타원편광 라이다 개발 및 이를 이용한 에어로졸과 구름의 특성 측정

  • Kim, Dukhyeon (Division of Cultural Studies, Hanbat National University) ;
  • Cheong, Hai Du (Division of Cultural Studies, Hanbat National University) ;
  • Volkov, Sergei N. (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences)
  • Received : 2015.01.09
  • Accepted : 2015.01.28
  • Published : 2015.02.25

Abstract

We have developed ellipsometry lidar and measured aerosol and ice-cloud characteristics. To measure a full normalized backscattering phase matrix (NBSPM) composed of nine elements, we have designed an optical system with three kinds of transmission and three kinds of reception, composed of ${\lambda}/2$ waveplate, ${\lambda}/4$ waveplate and empty optic. To find systematic optical errors, we used clean day middle-altitude (4-6km) lidar signals for which the aerosol's concentration was small and its orientation chaotic. After calibrating our lidar system, we have calculated NBSPM elements scattered from an aerosol and from an ice cloud. In the case of an aerosol, we found that the off-diagonal values $m_{12},{\ldots},m_{34}$ of the NBSPM are smaller than those for a cirrus cloud. Also, the off-diagonal values of the NBSPM from a cirrus cloud depend on atmospheric conditions.

얼음 구름과 에어로의 후방산란 특성을 측정할 수 있는 타원 편광라이다를 구성하고 이를 이용하여 에어로졸과 얼음 구름의 특성을 측정하였다. 규격화된 전체 후방산란 뮬러 행렬을 구하기 위하여 3 개의 광학계(${\lambda}/4$ 파장판, ${\lambda}/2$ 파장판, 그리고 빈 공간)로 구성된 조사 광학계와 같은 구조로 된 수신광학계를 통하여 총 9 개의 라이다 시스템을 구축하였다. 구축된 광학계의 체계적 오차를 구하기 위하여 에어로졸의 농도가 낮은 높은 고도의 9 개의 라이다 신호를 이용하였다. 9 개의 라이다 신호를 이용하여 5 개의 광학계 설치 오차(offset angle)와 무질서하게 배열된 에어로졸에 대한 뮬러 메트릭스 요소(2 개)를 찾아내었다. 광학장치를 검정한 후 얼음구름과 에어로졸에서 NBSPM (Normalized Backscattering Phase Matrix)를 구하였으며, 그 결과 에어로졸의 경우 입자의 방향성과 관계되는 NBSPM 의 비대각 행렬이 얼음 구름의 그것보다 작음을 알 수 있었다. 그리고 권운의 경우에도 NBSPM 의 비대각 행렬이 변하는 기상 조건에 따라 달라지는 것을 볼 수 있었다.

Keywords

References

  1. N. Sugimoto, I. Matsui, and A. Shimizu, "Measurement of water cloud particle size with a dual-polarization pulsed bistatic lidar," Optical Review 8, 476-479(200l). https://doi.org/10.1007/BF02931738
  2. H.-J. Lee, J. E. Kim, and Y. Chun, "Aerosol vertical distribution measured by LIDARs in Baengnyeongdo, Munsan, and Gunsan during 10-11 May 2010," Atmosphere. Korean Meteorological Society 23, 519-526 (2013). https://doi.org/10.14191/Atmos.2013.23.4.519
  3. Y. M. Noh, K. Lee, D. Mueller, Y. J. Choi, K. R. Kim, H. Lee, and T. J. Choi, "Instantaneous monitoring of pollen distribution in the atmosphere by surface-based lidar," Korean Journal of Remote Sensing 28, 1-9 (2012). https://doi.org/10.7780/kjrs.2012.28.1.001
  4. N. Sugimoto, T. Nishizawa, X. Liu, I. Matsui, A. Shimizu, Y. Zhang, Y. J. Kim, R. Li, and J. Liu, "Continuous observations of aerosol profiles with a two-wavelength mie-scattering lidar in Guangzhou in PRD2006," J. Appl. Meteor. Climatol. 48, 1822-1830 (2008).
  5. N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, and T. Endoh, "Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on boardthe research vessel Mirai," Geophys. Res. Lett. 29, 1901-1904 (2002). https://doi.org/10.1029/2002GL015112
  6. M. D. Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, "Use of polarimetric lidar for the study of oriented ice plates in clouds," Appl. Opt. 45, 4878-4887 (2006). https://doi.org/10.1364/AO.45.004878
  7. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, "Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar," Appl. Opt. 43, 6620-6628 (2004). https://doi.org/10.1364/AO.43.006620
  8. Y. Balin, B. Kaul, G. Kokhanenko, and D. Winker, "Application of circularly polarized laser radiation for sensing of crystal clouds," Opt. Express 17, 6849-6859 (2009). https://doi.org/10.1364/OE.17.006849
  9. G. Roy, X. Cao, and R. Bernier, "On linear and circular depolarization LIDAR signatures in remote sensing of bioaerosols: Experimental validation of the Mueller matrix for randomly oriented particles," Opt. Eng. 50, 126001-10 (2011). https://doi.org/10.1117/1.3657505
  10. D. Kim, H. D. Cheong, and B. Kim, "Systematic error correction in dual-rotating quarter-wave plate ellipsometry using overestimated optimization method," Korean J. Opt. Photon. 25, 29-37 (2014). https://doi.org/10.3807/KJOP.2014.25.1.029
  11. H. C. van de Hulst, Light Scattering by Small Particles (Chapman & Hall, Ltd., London, UK, 1957), Chapter 5.
  12. S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980). https://doi.org/10.1364/AO.19.000962
  13. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995). https://doi.org/10.1364/OL.20.001356
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chapter 2.
  15. Y. S. Balin, B. V. Kaul, G. P. Kokhanenko, and I. E. Penner, "Observations of specular reflective particles and layers in crystal clouds," Opt. Express 19, 6209-6214 (2011). https://doi.org/10.1364/OE.19.006209
  16. A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, "Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a twowavelength polarization lidar," Opt. Express 22, 24566-24573 (2014). https://doi.org/10.1364/OE.22.024566
  17. D. N. Romashov and R. F. Rakhimov, "Determination of the axially symmetric elongated particles orientation from data of polarization sounding," Atmos. Oceanic Opt. 6, 515-518 (1993).
  18. B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, "Studies of ice crystal clouds through lidar measureements of backscattering matrics," Atmos. Oceanic Opt. 6, 325-332 (2003).
  19. S. Spuler, B. Morley, and J. VanAndel, "Measuring backscatter phase matrices of oriented scatterers," Opt. Express 20, 29553-29567 (2012). https://doi.org/10.1364/OE.20.029553
  20. J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981). https://doi.org/10.1364/AO.20.000211
  21. F. G. Fernald, "Analysis of atmospheric lidar observations: Some comments," Appl. Opt. 23, 652-653 (1984). https://doi.org/10.1364/AO.23.000652